15 research outputs found
Recommended from our members
Natural selection favoring more transmissible HIV detected in United States molecular transmission network.
HIV molecular epidemiology can identify clusters of individuals with elevated rates of HIV transmission. These variable transmission rates are primarily driven by host risk behavior; however, the effect of viral traits on variable transmission rates is poorly understood. Viral load, the concentration of HIV in blood, is a heritable viral trait that influences HIV infectiousness and disease progression. Here, we reconstruct HIV genetic transmission clusters using data from the United States National HIV Surveillance System and report that viruses in clusters, inferred to be frequently transmitted, have higher viral loads at diagnosis. Further, viral load is higher in people in larger clusters and with increased network connectivity, suggesting that HIV in the United States is experiencing natural selection to be more infectious and virulent. We also observe a concurrent increase in viral load at diagnosis over the last decade. This evolutionary trajectory may be slowed by prevention strategies prioritized toward rapidly growing transmission clusters
A Functional Proteomic Method for Biomarker Discovery
The sequencing of the human genome holds out the hope for personalized medicine, but it is clear that analysis of DNA or RNA content alone is not sufficient to understand most disease processes. Proteomic strategies that allow unbiased identification of proteins and their post-transcriptional and -translation modifications are an essential complement to genomic strategies. However, the enormity of the proteome and limitations in proteomic methods make it difficult to determine the targets that are particularly relevant to human disease. Methods are therefore needed that allow rational identification of targets based on function and relevance to disease. Screening methodologies such as phage display, SELEX, and small-molecule combinatorial chemistry have been widely used to discover specific ligands for cells or tissues of interest, such as tumors. Those ligands can be used in turn as affinity probes to identify their cognate molecular targets when they are not known in advance. Here we report an easy, robust and generally applicable approach in which phage particles bearing cell- or tissue-specific peptides serve directly as the affinity probes for their molecular targets. For proof of principle, the method successfully identified molecular binding partners, three of them novel, for 15 peptides specific for pancreatic cancer
Incident infection in high-priority HIV molecular transmission clusters in the United States.
ObjectiveTo identify correlates of incident HIV infection in rapidly growing HIV molecular clusters.DesignPhylogenetic analysis of HIV public health surveillance data.MethodsHigh-priority HIV genetic transmission clusters with evidence of rapid growth in 2012 (i.e. clusters with a pairwise genetic distance ≤0.005 substitutions/site and at least three cases diagnosed in 2012) were identified using HIV-TRACE. Then, we investigated cluster growth, defined as HIV cases diagnosed in the following 5 years that were genetically linked to these clusters. For clusters that grew during the follow-up period, Bayesian molecular clock phylogenetic inference was performed to identify clusters with evidence of incident HIV infection (as opposed to diagnosis of previously infected cases) during this follow-up period.ResultsOf the 116 rapidly growing clusters identified, 73 (63%) had phylogenetic evidence for an incident HIV case during the 5-year follow-up period. Correlates of an incident HIV case arising in clusters included a greater number of diagnosed but virally unsuppressed cases in 2012, a greater number of inferred undiagnosed cases in the cluster in 2012, and a younger time of most recent common ancestor for the cluster.ConclusionThese findings suggest that incident infections in rapidly growing clusters originate equally from diagnosed but unsuppressed cases and undiagnosed infections. These results highlight the importance of promoting retention in care and viral suppression as well as partner notification and other case-finding activities when investigating and intervening on high-priority molecular transmission clusters
Recommended from our members
Optimising diagnosis of viraemic hepatitis C infection: the development of a target product profile
Background: The current low access to virological testing to confirm chronic viraemic HCV infection in low- and middle-income countries (LMIC) is limiting the rollout of hepatitis C (HCV) care. Existing tests are complex, costly and require sophisticated laboratory infrastructure. Diagnostic manufacturers need guidance on the optimal characteristics a virological test needs to have to ensure the greatest impact on HCV diagnosis and treatment in LMIC. Our objective was to develop a target product profile (TPP) for diagnosis of HCV viraemia using a global stakeholder consensus-based approach. Methods: Based on the standardised process established to develop consensus-based TPPs, we followed five key steps. (i) Identifying key potential global stakeholders for consultation and input into the TPP development process. (ii) Informal priority-setting exercise with key experts to identify the needs that should be the highest priority for the TPP development; (iii) Defining the key TPP domains (scope, performance and operational characteristics and price). (iv) Delphi-like process with larger group of key stakeholder to facilitate feedback on the key TPP criteria and consensus building based on pre-defined consensus criteria. (v) A final consensus-gathering meeting for discussions around disputed criteria. A complementary values and preferences survey helped to assess trade-offs between different key characteristics. Results: The following key attributes for the TPP for a test to confirm HCV viraemic infection were identified: The scope defined is for both HCV detection as well as confirmation of cure. The timeline of development for tests envisioned in the TPP is 5 years. The test should be developed for use by health-care workers or laboratory technicians with limited training in countries with a medium to high prevalence of HCV (1.5–3.5% and >3.5%) and in high-risk populations in low prevalence settings (<1.5%). A clinical sensitivity at a minimum of 90% is considered sufficient (analytical sensitivity of the equivalent of 3000 IU/ml), particularly if the test increases access to testing through an affordable price, increase ease-of-use and feasibility on capillary blood. Polyvalency would be optimal (i.e. ability to test for HIV and others). The only characteristic that full agreement could not be achieved on was the price for a virological test. Discussants felt that to reach the optimal target price substantial trade-offs had to be made (e.g. in regards to sensitivity and integration). Conclusion: The TPP and V&P survey results define the need for an easy-to-use, low cost test to increase access to diagnosis and linkage to care in LMIC. Electronic supplementary material The online version of this article (10.1186/s12879-017-2770-5) contains supplementary material, which is available to authorized users
Recommended from our members
Natural selection favoring more transmissible HIV detected in United States molecular transmission network.
HIV molecular epidemiology can identify clusters of individuals with elevated rates of HIV transmission. These variable transmission rates are primarily driven by host risk behavior; however, the effect of viral traits on variable transmission rates is poorly understood. Viral load, the concentration of HIV in blood, is a heritable viral trait that influences HIV infectiousness and disease progression. Here, we reconstruct HIV genetic transmission clusters using data from the United States National HIV Surveillance System and report that viruses in clusters, inferred to be frequently transmitted, have higher viral loads at diagnosis. Further, viral load is higher in people in larger clusters and with increased network connectivity, suggesting that HIV in the United States is experiencing natural selection to be more infectious and virulent. We also observe a concurrent increase in viral load at diagnosis over the last decade. This evolutionary trajectory may be slowed by prevention strategies prioritized toward rapidly growing transmission clusters
Validation of affinity partner for phage clones.
<p>A) Western blot of the protein that binds to clone 8, probed using anti-pyruvate kinase M2 antibody. B) ELISA of clone 8 incubated with purified pyruvate kinase M2, or with BSA or recombinant annexin A2 as negative controls. C) Western blot of cell fractionation using anti-pyruvate kinase M2 antibody D) ELISA on intact, non-permeabilized L3.6pl cells with anti-pyruvate kinase M2 antibody. E) Western blot of clone 15 associated protein probed with anti annexin A2 antibody. E) ELISA showing binding of clone 15 to annexin A2 protein. F) Western blot of cell fractionation using anti annexin A2 antibody. G) ELISA on intact, non-permeabilized L3.6pl cells with anti-Annexin A2 antibody.</p
Recommended from our members
Identifying Clusters of Recent and Rapid HIV Transmission Through Analysis of Molecular Surveillance Data
BackgroundDetecting recent and rapid spread of HIV can help prioritize prevention and early treatment for those at highest risk of transmission. HIV genetic sequence data can identify transmission clusters, but previous approaches have not distinguished clusters of recent, rapid transmission. We assessed an analytic approach to identify such clusters in the United States.MethodsWe analyzed 156,553 partial HIV-1 polymerase sequences reported to the National HIV Surveillance System and inferred transmission clusters using 2 genetic distance thresholds (0.5% and 1.5%) and 2 periods for diagnoses (all years and 2013-2015, ie, recent diagnoses). For rapidly growing clusters (with ≥5 diagnoses during 2015), molecular clock phylogenetic analysis estimated the time to most recent common ancestor for all divergence events within the cluster. Cluster transmission rates were estimated using these phylogenies.ResultsA distance threshold of 1.5% identified 103 rapidly growing clusters using all diagnoses and 73 using recent diagnoses; at 0.5%, 15 clusters were identified using all diagnoses and 13 using recent diagnoses. Molecular clock analysis estimated that the 13 clusters identified at 0.5% using recent diagnoses had been diversifying for a median of 4.7 years, compared with 6.5-13.2 years using other approaches. The 13 clusters at 0.5% had a transmission rate of 33/100 person-years, compared with previous national estimates of 4/100 person-years.ConclusionsOur approach identified clusters with transmission rates 8 times those of previous national estimates. This method can identify groups involved in rapid transmission and help programs effectively direct and prioritize limited public health resources
Listing of the phage clones, their binding peptide sequence, and their associated targeted protein.
<p>Listing of the phage clones, their binding peptide sequence, and their associated targeted protein.</p
Tissue microarray data.
<p>Values are pathologist's scoring of number of cells stained (0–3) and intensity of staining (0–3) multiplied together. A) Representative tumor section stained for plectin. Note the membrane staining. B) Pathologist's scoring of human cancer biopsy specimens stained for plectin. C) Representative PDAC tumor biopsy section stained for pyruvate kinase M2. D) Pathologist's scoring of pyruvate kinase M2 stained human cancer biopsy tissue sections.</p