58 research outputs found

    Evaluation of neoadjuvant chemotherapy-induced changes in contralateral healthy breast tissue through diffuse optical spectroscopy

    Get PDF
    This study aims at evaluating the effect of NeoAdjuvant Chemotherapy (NAC) on the contralateral tumor-free breast tissue through time domain diffuse optical spectroscopy. The breast tissue composition consisting of hemoglobin, water, lipid, and collagen concentrations is quantitatively derived using our seven-wavelength (635-1060 nm) optical mammograph. Preliminary analysis of ten patients' data shows compositional changes occurring in the non-tumor breast in addition to the tumor breast. This includes reduction in breast density and components’ concentrations through the course of the therapy. The final goal is to eventually identify if there is a correlation of these effects with pathological complete response

    The SOLUS instrument: Optical characterization of the first hand-held probe for multimodal imaging (ultrasound and multi-wavelength time-resolved diffuse optical tomography)

    Get PDF
    SOLUS is a multimodal imaging system comprising the first miniaturized handheld device to perform time domain Diffuse Optical Tomography at 8 visible and near infrared wavelengths. The hand-held probe also includes B-mode ultrasounds, Shear Wave Elastography and Color Doppler sonography, being its first goal the multiparametric non-invasive diagnosis of breast cancer. This work aims at presenting the system and its main capabilities, focusing on the optical characterization carried out to assess the overall performance of the developed photonics technologies (picosecond pulsed lasers, high-sensitive time-gated sensors and integrated electronics) and of the software for tomographic reconstructions (perturbative model based on Born approximation). Systematic measurements performed on tissue-mimicking phantoms, reproducing a perturbation (e.g., a lesion) in a homogenous background, helped understand the system efficiency range. Variations in absorption are tracked with acceptable quality, which is key to estimate tissue composition, up to 0.25 cm 1 for the bulk (relative error on average of 16 %) and 0.16 cm 1 for sufficiently big perturbations (relative error on average of 26 % for 6 cm3 inhomogeneities). Instead, the system showed low sensitivity to a localized perturbation in scattering and a relative error on average of 17 % for the scattering bulk assessment. An example case of clinical measurement is also discussed

    Oncoplastic and reconstructive surgery in SENONETWORK Italian breast centers: lights and shadows

    Get PDF
    Breast cancer (BC) poses a significant worldwide health challenge. In the year 2020, more than 2.3 million cases were detected, and there were approximately 685,000 deaths attributed to BC [1]. Although systemic treatments are gaining importance in BC management, surgery continues to be the fundamental treatment approach for the majority of early-stage patients. A prolonged discussion continues, examining the overall survival rates between mastectomy and breast-conserving therapy (BCT), yielding inconclusive results. Nevertheless, breast-conservative therapy appears to present fewer complications [2, 3]. Patients undergoing BCT experience enhanced cosmetic results and a better quality of life compared to those opting for non-reconstructed mastectom

    Axillary lymphadenopathy at the time of COVID-19 vaccination: ten recommendations from the European Society of Breast Imaging (EUSOBI).

    Get PDF
    Unilateral axillary lymphadenopathy is a frequent mild side effect of COVID-19 vaccination. European Society of Breast Imaging (EUSOBI) proposes ten recommendations to standardise its management and reduce unnecessary additional imaging and invasive procedures: (1) in patients with previous history of breast cancer, vaccination should be performed in the contralateral arm or in the thigh; (2) collect vaccination data for all patients referred to breast imaging services, including patients undergoing breast cancer staging and follow-up imaging examinations; (3) perform breast imaging examinations preferentially before vaccination or at least 12 weeks after the last vaccine dose; (4) in patients with newly diagnosed breast cancer, apply standard imaging protocols regardless of vaccination status; (5) in any case of symptomatic or imaging-detected axillary lymphadenopathy before vaccination or at least 12 weeks after, examine with appropriate imaging the contralateral axilla and both breasts to exclude malignancy; (6) in case of axillary lymphadenopathy contralateral to the vaccination side, perform standard work-up; (7) in patients without breast cancer history and no suspicious breast imaging findings, lymphadenopathy only ipsilateral to the vaccination side within 12 weeks after vaccination can be considered benign or probably-benign, depending on clinical context; (8) in patients without breast cancer history, post-vaccination lymphadenopathy coupled with suspicious breast finding requires standard work-up, including biopsy when appropriate; (9) in patients with breast cancer history, interpret and manage post-vaccination lymphadenopathy considering the timeframe from vaccination and overall nodal metastatic risk; (10) complex or unclear cases should be managed by the multidisciplinary team

    Breast MRI: EUSOBI recommendations for women's information.

    Get PDF
    UNLABELLED: This paper summarizes information about breast MRI to be provided to women and referring physicians. After listing contraindications, procedure details are described, stressing the need for correct scheduling and not moving during the examination. The structured report including BI-RADS® categories and further actions after a breast MRI examination are discussed. Breast MRI is a very sensitive modality, significantly improving screening in high-risk women. It also has a role in clinical diagnosis, problem solving, and staging, impacting on patient management. However, it is not a perfect test, and occasionally breast cancers can be missed. Therefore, clinical and other imaging findings (from mammography/ultrasound) should also be considered. Conversely, MRI may detect lesions not visible on other imaging modalities turning out to be benign (false positives). These risks should be discussed with women before a breast MRI is requested/performed. Because breast MRI drawbacks depend upon the indication for the examination, basic information for the most important breast MRI indications is presented. Seventeen notes and five frequently asked questions formulated for use as direct communication to women are provided. The text was reviewed by Europa Donna-The European Breast Cancer Coalition to ensure that it can be easily understood by women undergoing MRI. KEY POINTS: • Information on breast MRI concerns advantages/disadvantages and preparation to the examination • Claustrophobia, implantable devices, allergic predisposition, and renal function should be checked • Before menopause, scheduling on day 7-14 of the cycle is preferred • During the examination, it is highly important that the patient keeps still • Availability of prior examinations improves accuracy of breast MRI interpretation.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00330-015-3807-

    Breast ultrasound: recommendations for information to women and referring physicians by the European Society of Breast Imaging

    Get PDF
    Abstract This article summarises the information that should be provided to women and referring physicians about breast ultrasound (US). After explaining the physical principles, technical procedure and safety of US, information is given about its ability to make a correct diagnosis, depending on the setting in which it is applied. The following definite indications for breast US in female subjects are proposed: palpable lump; axillary adenopathy; first diagnostic approach for clinical abnormalities under 40 and in pregnant or lactating women; suspicious abnormalities at mammography or magnetic resonance imaging (MRI); suspicious nipple discharge; recent nipple inversion; skin retraction; breast inflammation; abnormalities in the area of the surgical scar after breast conserving surgery or mastectomy; abnormalities in the presence of breast implants; screening high-risk women, especially when MRI is not performed; loco-regional staging of a known breast cancer, when MRI is not performed; guidance for percutaneous interventions (needle biopsy, pre-surgical localisation, fluid collection drainage); monitoring patients with breast cancer receiving neo-adjuvant therapy, when MRI is not performed. Possible indications such as supplemental screening after mammography for women aged 40–74 with dense breasts are also listed. Moreover, inappropriate indications include screening for breast cancer as a stand-alone alternative to mammography. The structure and organisation of the breast US report and of classification systems such as the BI-RADS and consequent management recommendations are illustrated. Information about additional or new US technologies (colour-Doppler, elastography, and automated whole breast US) is also provided. Finally, five frequently asked questions are answered. Teaching Points • US is an established tool for suspected cancers at all ages and also the method of choice under 40. • For US-visible suspicious lesions, US-guided biopsy is preferred, even for palpable findings. • High-risk women can be screened with US, especially when MRI cannot be performed. • Supplemental US increases cancer detection but also false positives, biopsy rate and follow-up exams. • Breast US is inappropriate as a stand-alone screening method

    Position paper on screening for breast cancer by the European Society of Breast Imaging (EUSOBI) and 30 national breast radiology bodies from Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Israel, Lithuania, Moldova, The Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Spain, Sweden, Switzerland and Turkey.

    Get PDF
    UNLABELLED: EUSOBI and 30 national breast radiology bodies support mammography for population-based screening, demonstrated to reduce breast cancer (BC) mortality and treatment impact. According to the International Agency for Research on Cancer, the reduction in mortality is 40 % for women aged 50-69 years taking up the invitation while the probability of false-positive needle biopsy is <1 % per round and overdiagnosis is only 1-10 % for a 20-year screening. Mortality reduction was also observed for the age groups 40-49 years and 70-74 years, although with "limited evidence". Thus, we firstly recommend biennial screening mammography for average-risk women aged 50-69 years; extension up to 73 or 75 years, biennially, is a second priority, from 40-45 to 49 years, annually, a third priority. Screening with thermography or other optical tools as alternatives to mammography is discouraged. Preference should be given to population screening programmes on a territorial basis, with double reading. Adoption of digital mammography (not film-screen or phosphor-plate computer radiography) is a priority, which also improves sensitivity in dense breasts. Radiologists qualified as screening readers should be involved in programmes. Digital breast tomosynthesis is also set to become "routine mammography" in the screening setting in the next future. Dedicated pathways for high-risk women offering breast MRI according to national or international guidelines and recommendations are encouraged. KEY POINTS: • EUSOBI and 30 national breast radiology bodies support screening mammography. • A first priority is double-reading biennial mammography for women aged 50-69 years. • Extension to 73-75 and from 40-45 to 49 years is also encouraged. • Digital mammography (not film-screen or computer radiography) should be used. • DBT is set to become "routine mammography" in the screening setting in the next future

    European Society of Breast Imaging (EUSOBI) guidelines on the management of axillary lymphadenopathy after COVID-19 vaccination: 2023 revision

    Get PDF
    Axillary lymphadenopathy is a common side effect of COVID-19 vaccination, leading to increased imaging-detected asymptomatic and symptomatic unilateral axillary lymphadenopathy. This has threatened to negatively impact the workflow of breast imaging services, leading to the release of ten recommendations by the European Society of Breast Imaging (EUSOBI) in August 2021. Considering the rapidly changing scenario and data scarcity, these initial recommendations kept a highly conservative approach. As of 2023, according to newly acquired evidence, EUSOBI proposes the following updates, in order to reduce unnecessary examinations and avoid delaying necessary examinations. First, recommendation n. 3 has been revised to state that breast examinations should not be delayed or rescheduled because of COVID-19 vaccination, as evidence from the first pandemic waves highlights how delayed or missed screening tests have a negative effect on breast cancer morbidity and mortality, and that there is a near-zero risk of subsequent malignant findings in asymptomatic patients who have unilateral lymphadenopathy and no suspicious breast findings. Second, recommendation n. 7 has been revised to simplify follow-up strategies: in patients without breast cancer history and no imaging findings suspicious for cancer, symptomatic and asymptomatic imaging-detected unilateral lymphadenopathy on the same side of recent COVID-19 vaccination (within 12 weeks) should be classified as a benign finding (BI-RADS 2) and no further work-up should be pursued. All other recommendations issued by EUSOBI in 2021 remain valid

    Image-guided breast biopsy and localisation: recommendations for information to women and referring physicians by the European Society of Breast Imaging

    Get PDF
    Abstract: We summarise here the information to be provided to women and referring physicians about percutaneous breast biopsy and lesion localisation under imaging guidance. After explaining why a preoperative diagnosis with a percutaneous biopsy is preferred to surgical biopsy, we illustrate the criteria used by radiologists for choosing the most appropriate combination of device type for sampling and imaging technique for guidance. Then, we describe the commonly used devices, from fine-needle sampling to tissue biopsy with larger needles, namely core needle biopsy and vacuum-assisted biopsy, and how mammography, digital breast tomosynthesis, ultrasound, or magnetic resonance imaging work for targeting the lesion for sampling or localisation. The differences among the techniques available for localisation (carbon marking, metallic wire, radiotracer injection, radioactive seed, and magnetic seed localisation) are illustrated. Type and rate of possible complications are described and the issue of concomitant antiplatelet or anticoagulant therapy is also addressed. The importance of pathological-radiological correlation is highlighted: when evaluating the results of any needle sampling, the radiologist must check the concordance between the cytology/pathology report of the sample and the radiological appearance of the biopsied lesion. We recommend that special attention is paid to a proper and tactful approach when communicating to the woman the need for tissue sampling as well as the possibility of cancer diagnosis, repeat tissue sampling, and or even surgery when tissue sampling shows a lesion with uncertain malignant potential (also referred to as “high-risk” or B3 lesions). Finally, seven frequently asked questions are answered
    corecore