58 research outputs found

    Aerosol modulation of ultraviolet radiation dose over four metro cities in india

    Get PDF
    This paper discusses the influence of aerosols on UV erythemal dose over four metro cities in India. Tropospheric Emission Monitoring Internet Service (TEMIS), archived UV-index (UV-I), and UV daily erythemal dose obtained from SCIAMACHY satellite were used in this study during June 2004 and May 2005 periods covering four important Indian seasons. UV-Index (UV-I), an important parameter representing UV risk, was found to be in the high to extreme range in Chennai (8.1 to 15.33), moderate to extreme range in Mumbai and Kolkata (5 to 16.5), and low to extreme over Delhi (3 to 15). Average UV erythemal dose showed seasonal variation from 5.9 to 6.3 KJm-2 during summer, 2.9 to 4.4 KJm-2 during postmonsoon, 3 to 4.5 KJm-2 during winter, and 5.1 to 6.19 KJm-2 during premonsoon seasons over the four cities. To estimate the influence of aerosols on reducing UV dose, UV aerosol radiative forcing and forcing efficiency were estimated over the sites. The average aerosol forcing efficiency was found to be from - 1.38 ± 0.33 to - 3.01 ± 0.28 KJm-2 AOD-1 on different seasons. The study suggests that aerosols can reduce the incoming UV radiation dose by 30-60 during different seasons. © 2014 A. S. Panicker et al

    Aerosol modulation of ultraviolet radiation dose over four metro cities in India

    Get PDF
    This paper discusses the influence of aerosols on UV erythemal dose over four metro cities in India. Tropospheric Emission Monitoring Internet Service (TEMIS), archived UV-index (UV-I), and UV daily erythemal dose obtained from SCIAMACHY satellite were used in this study during June 2004 and May 2005 periods covering four important Indian seasons. UV-Index (UV-I), an important parameter representing UV risk, was found to be in the high to extreme range in Chennai (8.1 to 15.33), moderate to extreme range in Mumbai and Kolkata (5 to 16.5), and low to extreme over Delhi (3 to 15). Average UV erythemal dose showed seasonal variation from 5.9 to 6.3 KJm−2 during summer, 2.9 to 4.4 KJm−2 during postmonsoon, 3 to 4.5 KJm−2 during winter, and 5.1 to 6.19 KJm−2 during premonsoon seasons over the four cities. To estimate the influence of aerosols on reducing UV dose, UV aerosol radiative forcing and forcing efficiency were estimated over the sites. The average aerosol forcing efficiency was found to be from to  KJm−2 AOD−1 on different seasons. The study suggests that aerosols can reduce the incoming UV radiation dose by 30–60% during different seasons

    Assessment and validation of i-skyradiometer retrievals using broadband flux and MODIS data

    Get PDF
    Ground-based network of cloud measurements is presently limited and there exists uncertainty in the cloud microphysical parameters derived from ground-based measurements. Bias in the i-skyradiometer derived cloud optical depth () and droplet effective radius () and the importance of these parameters in the parameterization of clouds in climate models have made us intend to develop a possible method for improving these parameters. A new combination method, which uses zenith sky transmittance and surface radiation measurements, has been proposed in the present study to improve the retrievals. The i-skyradiometer derived parameters and have been provided as a first guess to a radiative transfer model (SBDART) and a new retrieval algorithm has been implemented to obtain the best combination of and having minimum bias (−0.09 and −2.5) between the simulated global and diffuse fluxes at the surface with the collocated surface radiation measurements. The new retrieval method has improved and values compared to those derived using the transmittance only method and are in good agreement with the MODIS satellite retrievals. The study therefore suggests a possible improvement of the i-skyradiometer derived cloud parameters using observed radiation fluxes and a radiative transfer model

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Aerosol indirect effect during successive contrasting monsoon seasons over Indian subcontinent using MODIS data

    No full text
    Aerosol indirect effect (AIE) was estimated over six Indian regions, which have been identified as main source regions of absorbing aerosol emissions, for four successive contrasting monsoon years, 2001 (normal monsoon rainfall year), 2002 (drought year), 2003 (excess monsoon rainfall year) and 2004 (below normal rainfall year). The AIE has been estimated both for fixed cloud liquid water path (CLWP) and for fixed cloud ice path (CIP) bins, ranging from 1 to 350 gm-2 at 25 gm-2 intervals obtained from Moderate resolution imaging spectroradiometer (MODIS). In 2002 and 2004, AIE found to be of positive (Twomey effect) in majority of the fixed CLWP and CIP bins, while in 2001 and 2003 majority of the bins were found to be showing negative indirect effect (Anti-Twomey effect). Changes in circulation patterns during contrasting monsoon seasons, bringing up air mass containing aerosols of different source origins may be the main reason for this positive and negative AIE. The study suggests that AIE could be one of the factors in modulating Indian summer monsoon. However, further research on this topic is to be carried out to establish the relationship between AIE and Indian monsoon rainfall and also AIE values may be parameterized in climate models for better prediction of monsoon

    Indirect forcing of black carbon on clouds over northeast India

    No full text
    Black carbon (BC) induced indirect radiative forcing and cloud albedo effect has been studied for the first time over northeast India. Measurements of BC and cloud microphysical parameters were carried out during Phase-I of the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) over northeast India (Guwahati) in 2009. Liquid water path (LWP) in the cloud layers coherent with BC on different experimental days was found to be 206–327 g m−2 over the region. Black carbon aerosol indirect effect (BCIE) for fixed LWP is found to be 0.32–0.48 on different days of observations. The indirect forcing corresponding to this BCIE has been estimated using a radiative transfer model for fixed LWP by altering the derived BC-AOD (aerosol optical depth from measured BC profiles) and cloud effective radius (Re) combinations. The estimated average BC-induced indirect forcing (BCIF) was −24 to −37.1 W m−2 at the surface and +2.5 to +14.8 W m−2 at the top of the atmosphere (TOA). The average albedo due to BCIF at TOA was 0.49–0.61. BCIF is found to reduce the cloud reflection by 1.5–2% over the region. The sensitivities of cloud parameters to BCIF and the albedo effect are illustrated

    Observations of enhanced aerosol longwave radiative forcing over an urban environment

    No full text
    Collocated measurements of sun/sky radiance, aerosol chemical composition and radiative fluxes have been utilized to estimate longwave aerosol radiative forcing over Pune, an Indian urban site during dry winter Dec2004 to Feb2005 by two methods. Hybrid method which uses observed downwelling and modeled upwelling longwave fluxes for different aerosol loadings yielded a surface forcing of 9.4 Wm -2. Model approach includes utilization of skyradiometer derived spectral aerosol optical properties in the visible and near infra-red wavelengths, modeled aerosol properties in 1.2-40 μm using observed soot and chemical composition data, MODIS water vapor and TOMS column ozone in a radiative transfer model. Estimates from model method showed longwave enhancement of 6.5 and 8.2 Wm -2 at the surface with tropical model atmosphere and temporally varying profiles of temperature and humidity, respectively. Study reveals that about 25% of the aerosol shortwave cooling is being compensated by increase in longwave radiation due to aerosol absorption
    • …
    corecore