166 research outputs found
EChO Payload electronics architecture and SW design
EChO is a three-modules (VNIR, SWIR, MWIR), highly integrated spectrometer,
covering the wavelength range from 0.55 m, to 11.0 m. The baseline
design includes the goal wavelength extension to 0.4 m while an optional
LWIR module extends the range to the goal wavelength of 16.0 m.
An Instrument Control Unit (ICU) is foreseen as the main electronic subsystem
interfacing the spacecraft and collecting data from all the payload
spectrometers modules. ICU is in charge of two main tasks: the overall payload
control (Instrument Control Function) and the housekeepings and scientific data
digital processing (Data Processing Function), including the lossless
compression prior to store the science data to the Solid State Mass Memory of
the Spacecraft. These two main tasks are accomplished thanks to the Payload On
Board Software (P-OBSW) running on the ICU CPUs.Comment: Experimental Astronomy - EChO Special Issue 201
The Visible and Near Infrared module of EChO
The Visible and Near Infrared (VNIR) is one of the modules of EChO, the
Exoplanets Characterization Observatory proposed to ESA for an M-class mission.
EChO is aimed to observe planets while transiting by their suns. Then the
instrument had to be designed to assure a high efficiency over the whole
spectral range. In fact, it has to be able to observe stars with an apparent
magnitude Mv= 9-12 and to see contrasts of the order of 10-4 - 10-5 necessary
to reveal the characteristics of the atmospheres of the exoplanets under
investigation. VNIR is a spectrometer in a cross-dispersed configuration,
covering the 0.4-2.5 micron spectral range with a resolving power of about 330
and a field of view of 2 arcsec. It is functionally split into two channels
respectively working in the 0.4-1 and 1.0-2.5 micron spectral ranges. Such a
solution is imposed by the fact the light at short wavelengths has to be shared
with the EChO Fine Guiding System (FGS) devoted to the pointing of the stars
under observation. The spectrometer makes use of a HgCdTe detector of 512 by
512 pixels, 18 micron pitch and working at a temperature of 45K as the entire
VNIR optical bench. The instrument has been interfaced to the telescope optics
by two optical fibers, one per channel, to assure an easier coupling and an
easier colocation of the instrument inside the EChO optical bench.Comment: 26 page
Comparing extrapolations of the coronal magnetic field structure at 2.5 solar radii with multi-viewpoint coronagraphic observations
The magnetic field shapes the structure of the solar corona but we still know
little about the interrelationships between the coronal magnetic field
configurations and the resulting quasi-stationary structures observed in
coronagraphic images (as streamers, plumes, coronal holes). One way to obtain
information on the large-scale structure of the coronal magnetic field is to
extrapolate it from photospheric data and compare the results with
coronagraphic images. Our aim is to verify if this comparison can be a fast
method to check systematically the reliability of the many methods available to
reconstruct the coronal magnetic field. Coronal fields are usually extrapolated
from photospheric measurements typically in a region close to the central
meridian on the solar disk and then compared with coronagraphic images at the
limbs, acquired at least 7 days before or after to account for solar rotation,
implicitly assuming that no significant changes occurred in the corona during
that period. In this work, we combine images from three coronagraphs
(SOHO/LASCO-C2 and the two STEREO/SECCHI-COR1) observing the Sun from different
viewing angles to build Carrington maps covering the entire corona to reduce
the effect of temporal evolution to ~ 5 days. We then compare the position of
the observed streamers in these Carrington maps with that of the neutral lines
obtained from four different magnetic field extrapolations, to evaluate the
performances of the latter in the solar corona. Our results show that the
location of coronal streamers can provide important indications to discriminate
between different magnetic field extrapolations.Comment: Accepted by A&A the 20th of May, 201
The ARIEL Instrument Control Unit design for the M4 Mission Selection Review of the ESA's Cosmic Vision Program
The Atmospheric Remote-sensing Infrared Exoplanet Large-survey mission
(ARIEL) is one of the three present candidates for the ESA M4 (the fourth
medium mission) launch opportunity. The proposed Payload will perform a large
unbiased spectroscopic survey from space concerning the nature of exoplanets
atmospheres and their interiors to determine the key factors affecting the
formation and evolution of planetary systems. ARIEL will observe a large number
(>500) of warm and hot transiting gas giants, Neptunes and super-Earths around
a wide range of host star types, targeting planets hotter than 600 K to take
advantage of their well-mixed atmospheres. It will exploit primary and
secondary transits spectroscopy in the 1.2-8 um spectral range and broad-band
photometry in the optical and Near IR (NIR). The main instrument of the ARIEL
Payload is the IR Spectrometer (AIRS) providing low-resolution spectroscopy in
two IR channels: Channel 0 (CH0) for the 1.95-3.90 um band and Channel 1 (CH1)
for the 3.90-7.80 um range. It is located at the intermediate focal plane of
the telescope and common optical system and it hosts two IR sensors and two
cold front-end electronics (CFEE) for detectors readout, a well defined process
calibrated for the selected target brightness and driven by the Payload's
Instrument Control Unit (ICU).Comment: Experimental Astronomy, Special Issue on ARIEL, (2017
Targeted cancer exome sequencing reveals recurrent mutations in myeloproliferative neoplasms
With the intent of dissecting the molecular complexity of Philadelphia-negative myeloproliferative neoplasms (MPN), we designed a target enrichment panel to explore, using next-generation sequencing (NGS), the mutational status of an extensive list of 2,000 cancer-associated genes and microRNAs. The genomic DNA of granulocytes and in-vitro-expanded CD3+ T-lymphocytes, as a germline control, was target-enriched and sequenced in a learning cohort of 20 MPN patients using Roche 454 technology. We identified 141 genuine somatic mutations, most of which were not previously described. To test the frequency of the identified variants, a larger validation cohort of 189 MPN patients was additionally screened for these mutations using Ion Torrent AmpliSeq NGS. Excluding the genes already described in MPN, for 8 genes (SCRIB, MIR662, BARD1, TCF12, FAT4, DAP3, POLG, and NRAS), we demonstrated a mutation frequency between 3 and 8%.
We also found that mutations at codon 12 of NRAS (NRASG12V and NRASG12D) were significantly associated, for primary myelofibrosis (PMF), with highest DIPSS-plus score categories. This association was then confirmed in 66 additional PMF patients composing a final dataset of 168 PMF showing an NRAS mutation frequency of 4.7%, which was associated with a worse outcome, as defined by the DIPSS plus score
Connecting Solar Orbiter remote-sensing observations and Parker Solar Probe in situ measurements with a numerical MHD reconstruction of the Parker spiral
As a key feature, NASAâs Parker Solar Probe (PSP) and ESA-NASAâs Solar Orbiter (SO) missions cooperate to trace solar wind and transients from their sources on the Sun to the inner interplanetary space. The goal of this work is to accurately reconstruct the interplanetary Parker spiral and the connection between coronal features observed remotely by the Metis coronagraph on-board SO and those detected in situ by PSP at the time of the first PSP-SO quadrature of January 2021. We use the Reverse in situ and MHD Approach (RIMAP), a hybrid analytical-numerical method performing data-driven reconstructions of the Parker spiral. RIMAP solves the MHD equations on the equatorial plane with the PLUTO code, using the measurements collected by PSP between 0.1 and 0.2 AU as boundary conditions. Our reconstruction connects density and wind speed measurements provided by Metis (3â6 solar radii) to those acquired by PSP (21.5 solar radii) along a single streamline. The capability of our MHD model to connect the inner corona observed by Metis and the super AlfveÌnic wind measured by PSP, not only confirms the research pathways provided by multi-spacecraft observations, but also the validity and accuracy of RIMAP reconstructions as a possible test bench to verify models of transient phenomena propagating across the heliosphere, such as coronal mass ejections, solar energetic particles and solar wind switchbacks
- âŠ