117 research outputs found

    Adaptive Sparse Structure Development with Pruning and Regeneration for Spiking Neural Networks

    Full text link
    Spiking Neural Networks (SNNs) are more biologically plausible and computationally efficient. Therefore, SNNs have the natural advantage of drawing the sparse structural plasticity of brain development to alleviate the energy problems of deep neural networks caused by their complex and fixed structures. However, previous SNNs compression works are lack of in-depth inspiration from the brain development plasticity mechanism. This paper proposed a novel method for the adaptive structural development of SNN (SD-SNN), introducing dendritic spine plasticity-based synaptic constraint, neuronal pruning and synaptic regeneration. We found that synaptic constraint and neuronal pruning can detect and remove a large amount of redundancy in SNNs, coupled with synaptic regeneration can effectively prevent and repair over-pruning. Moreover, inspired by the neurotrophic hypothesis, neuronal pruning rate and synaptic regeneration rate were adaptively adjusted during the learning-while-pruning process, which eventually led to the structural stability of SNNs. Experimental results on spatial (MNIST, CIFAR-10) and temporal neuromorphic (N-MNIST, DVS-Gesture) datasets demonstrate that our method can flexibly learn appropriate compression rate for various tasks and effectively achieve superior performance while massively reducing the network energy consumption. Specifically, for the spatial MNIST dataset, our SD-SNN achieves 99.51\% accuracy at the pruning rate 49.83\%, which has a 0.05\% accuracy improvement compared to the baseline without compression. For the neuromorphic DVS-Gesture dataset, 98.20\% accuracy with 1.09\% improvement is achieved by our method when the compression rate reaches 55.50\%

    Brain-inspired Evolutionary Architectures for Spiking Neural Networks

    Full text link
    The complex and unique neural network topology of the human brain formed through natural evolution enables it to perform multiple cognitive functions simultaneously. Automated evolutionary mechanisms of biological network structure inspire us to explore efficient architectural optimization for Spiking Neural Networks (SNNs). Instead of manually designed fixed architectures or hierarchical Network Architecture Search (NAS), this paper evolves SNNs architecture by incorporating brain-inspired local modular structure and global cross-module connectivity. Locally, the brain region-inspired module consists of multiple neural motifs with excitatory and inhibitory connections; Globally, we evolve free connections among modules, including long-term cross-module feedforward and feedback connections. We further introduce an efficient multi-objective evolutionary algorithm based on a few-shot performance predictor, endowing SNNs with high performance, efficiency and low energy consumption. Extensive experiments on static datasets (CIFAR10, CIFAR100) and neuromorphic datasets (CIFAR10-DVS, DVS128-Gesture) demonstrate that our proposed model boosts energy efficiency, archiving consistent and remarkable performance. This work explores brain-inspired neural architectures suitable for SNNs and also provides preliminary insights into the evolutionary mechanisms of biological neural networks in the human brain

    SOUL: Towards Sentiment and Opinion Understanding of Language

    Full text link
    Sentiment analysis is a well-established natural language processing task, with sentiment polarity classification being one of its most popular and representative tasks. However, despite the success of pre-trained language models in this area, they often fall short of capturing the broader complexities of sentiment analysis. To address this issue, we propose a new task called Sentiment and Opinion Understanding of Language (SOUL). SOUL aims to evaluate sentiment understanding through two subtasks: Review Comprehension (RC) and Justification Generation (JG). RC seeks to validate statements that focus on subjective information based on a review text, while JG requires models to provide explanations for their sentiment predictions. To enable comprehensive evaluation, we annotate a new dataset comprising 15,028 statements from 3,638 reviews. Experimental results indicate that SOUL is a challenging task for both small and large language models, with a performance gap of up to 27% when compared to human performance. Furthermore, evaluations conducted with both human experts and GPT-4 highlight the limitations of the small language model in generating reasoning-based justifications. These findings underscore the challenging nature of the SOUL task for existing models, emphasizing the need for further advancements in sentiment analysis to address its complexities. The new dataset and code are available at https://github.com/DAMO-NLP-SG/SOUL.Comment: EMNLP 2023 Main Conference, Short Pape

    Multilingual Jailbreak Challenges in Large Language Models

    Full text link
    While large language models (LLMs) exhibit remarkable capabilities across a wide range of tasks, they pose potential safety concerns, such as the ``jailbreak'' problem, wherein malicious instructions can manipulate LLMs to exhibit undesirable behavior. Although several preventive measures have been developed to mitigate the potential risks associated with LLMs, they have primarily focused on English data. In this study, we reveal the presence of multilingual jailbreak challenges within LLMs and consider two potential risk scenarios: unintentional and intentional. The unintentional scenario involves users querying LLMs using non-English prompts and inadvertently bypassing the safety mechanisms, while the intentional scenario concerns malicious users combining malicious instructions with multilingual prompts to deliberately attack LLMs. The experimental results reveal that in the unintentional scenario, the rate of unsafe content increases as the availability of languages decreases. Specifically, low-resource languages exhibit three times the likelihood of encountering harmful content compared to high-resource languages, with both ChatGPT and GPT-4. In the intentional scenario, multilingual prompts can exacerbate the negative impact of malicious instructions, with astonishingly high rates of unsafe output: 80.92\% for ChatGPT and 40.71\% for GPT-4. To handle such a challenge in the multilingual context, we propose a novel \textsc{Self-Defense} framework that automatically generates multilingual training data for safety fine-tuning. Experimental results show that ChatGPT fine-tuned with such data can achieve a substantial reduction in unsafe content generation. Data is available at https://github.com/DAMO-NLP-SG/multilingual-safety-for-LLMs. Warning: This paper contains examples with potentially harmful content

    Multi-scale Evolutionary Neural Architecture Search for Deep Spiking Neural Networks

    Full text link
    Spiking Neural Networks (SNNs) have received considerable attention not only for their superiority in energy efficient with discrete signal processing, but also for their natural suitability to integrate multi-scale biological plasticity. However, most SNNs directly adopt the structure of the well-established DNN, rarely automatically design Neural Architecture Search (NAS) for SNNs. The neural motifs topology, modular regional structure and global cross-brain region connection of the human brain are the product of natural evolution and can serve as a perfect reference for designing brain-inspired SNN architecture. In this paper, we propose a Multi-Scale Evolutionary Neural Architecture Search (MSE-NAS) for SNN, simultaneously considering micro-, meso- and macro-scale brain topologies as the evolutionary search space. MSE-NAS evolves individual neuron operation, self-organized integration of multiple circuit motifs, and global connectivity across motifs through a brain-inspired indirect evaluation function, Representational Dissimilarity Matrices (RDMs). This training-free fitness function could greatly reduce computational consumption and NAS's time, and its task-independent property enables the searched SNNs to exhibit excellent transferbility and scalability. Extensive experiments demonstrate that the proposed algorithm achieves state-of-the-art (SOTA) performance with shorter simulation steps on static datasets (CIFAR10, CIFAR100) and neuromorphic datasets (CIFAR10-DVS and DVS128-Gesture). The thorough analysis also illustrates the significant performance improvement and consistent bio-interpretability deriving from the topological evolution at different scales and the RDMs fitness function

    Sentiment Analysis in the Era of Large Language Models: A Reality Check

    Full text link
    Sentiment analysis (SA) has been a long-standing research area in natural language processing. It can offer rich insights into human sentiments and opinions and has thus seen considerable interest from both academia and industry. With the advent of large language models (LLMs) such as ChatGPT, there is a great potential for their employment on SA problems. However, the extent to which existing LLMs can be leveraged for different sentiment analysis tasks remains unclear. This paper aims to provide a comprehensive investigation into the capabilities of LLMs in performing various sentiment analysis tasks, from conventional sentiment classification to aspect-based sentiment analysis and multifaceted analysis of subjective texts. We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets. Our study reveals that while LLMs demonstrate satisfactory performance in simpler tasks, they lag behind in more complex tasks requiring deeper understanding or structured sentiment information. However, LLMs significantly outperform SLMs in few-shot learning settings, suggesting their potential when annotation resources are limited. We also highlight the limitations of current evaluation practices in assessing LLMs' SA abilities and propose a novel benchmark, \textsc{SentiEval}, for a more comprehensive and realistic evaluation. Data and code during our investigations are available at \url{https://github.com/DAMO-NLP-SG/LLM-Sentiment}

    Adaptive Reorganization of Neural Pathways for Continual Learning with Spiking Neural Networks

    Full text link
    The human brain can self-organize rich and diverse sparse neural pathways to incrementally master hundreds of cognitive tasks. However, most existing continual learning algorithms for deep artificial and spiking neural networks are unable to adequately auto-regulate the limited resources in the network, which leads to performance drop along with energy consumption rise as the increase of tasks. In this paper, we propose a brain-inspired continual learning algorithm with adaptive reorganization of neural pathways, which employs Self-Organizing Regulation networks to reorganize the single and limited Spiking Neural Network (SOR-SNN) into rich sparse neural pathways to efficiently cope with incremental tasks. The proposed model demonstrates consistent superiority in performance, energy consumption, and memory capacity on diverse continual learning tasks ranging from child-like simple to complex tasks, as well as on generalized CIFAR100 and ImageNet datasets. In particular, the SOR-SNN model excels at learning more complex tasks as well as more tasks, and is able to integrate the past learned knowledge with the information from the current task, showing the backward transfer ability to facilitate the old tasks. Meanwhile, the proposed model exhibits self-repairing ability to irreversible damage and for pruned networks, could automatically allocate new pathway from the retained network to recover memory for forgotten knowledge

    LiDAR-based Person Re-identification

    Full text link
    Camera-based person re-identification (ReID) systems have been widely applied in the field of public security. However, cameras often lack the perception of 3D morphological information of human and are susceptible to various limitations, such as inadequate illumination, complex background, and personal privacy. In this paper, we propose a LiDAR-based ReID framework, ReID3D, that utilizes pre-training strategy to retrieve features of 3D body shape and introduces Graph-based Complementary Enhancement Encoder for extracting comprehensive features. Due to the lack of LiDAR datasets, we build LReID, the first LiDAR-based person ReID dataset, which is collected in several outdoor scenes with variations in natural conditions. Additionally, we introduce LReID-sync, a simulated pedestrian dataset designed for pre-training encoders with tasks of point cloud completion and shape parameter learning. Extensive experiments on LReID show that ReID3D achieves exceptional performance with a rank-1 accuracy of 94.0, highlighting the significant potential of LiDAR in addressing person ReID tasks. To the best of our knowledge, we are the first to propose a solution for LiDAR-based ReID. The code and datasets will be released soon
    • …
    corecore