12,366 research outputs found
Singular Contractions of W-algebras
Many -algebras (e.g. the algebras) are consistent for all values of
the central charge except for a discrete set of exceptional values. We show
that such algebras can be contracted to new consistent degenerate algebras at
these exceptional values of the central charge.Comment: 10 pages, phyzzx.tex, QMW-92-7.(minor spelling and acknowledgement
corrections
Kondo effect and spin quenching in high-spin molecules on metal substrates
Using a state-of-the art combination of density functional theory and
impurity solver techniques we present a complete and parameter-free picture of
the Kondo effect in the high-spin () coordination complex known as
Manganese Phthalocyanine adsorbed on the Pb(111) surface. We calculate the
correlated electronic structure and corresponding tunnel spectrum and find an
asymmetric Kondo resonance, as recently observed in experiments. Contrary to
previous claims, the Kondo resonance stems from only one of three possible
Kondo channels with origin in the Mn 3d-orbitals, its peculiar asymmetric shape
arising from the modulation of the hybridization due to strong coupling to the
organic ligand. The spectral signature of the second Kondo channel is strongly
suppressed as the screening occurs via the formation of a many-body singlet
with the organic part of the molecule. Finally, a spin-1/2 in the 3d-shell
remains completely unscreened due to the lack of hybridization of the
corresponding orbital with the substrate, hence leading to a spin-3/2
underscreened Kondo effect.Comment: 5 pages, 2 figure
On the variational structure of breather solutions
In this paper we give a systematic and simple account that put in evidence
that many breather solutions of integrable equations satisfy suitable
variational elliptic equations, which also implies that the stability problem
reduces in some sense to the study of the spectrum of explicit linear
systems (\emph{spectral stability}), and the understanding of how bad
directions (if any) can be controlled using low regularity conservation laws.
We exemplify this idea in the case of the modified Korteweg-de Vries (mKdV),
Gardner, and sine-Gordon (SG) equations. Then we perform numerical simulations
that confirm, at the level of the spectral problem, our previous rigorous
results, where we showed that mKdV breathers are and stable,
respectively. In a second step, we also discuss the Gardner and the Sine-Gordon
cases, where the spectral study of a fourth-order linear matrix system is the
key element to show stability. Using numerical methods, we confirm that all
spectral assumptions leading to the stability of SG breathers
are numerically satisfied, even in the ultra-relativistic, singular regime. In
a second part, we study the periodic mKdV case, where a periodic breather is
known from the work of Kevrekidis et al. We rigorously show that these
breathers satisfy a suitable elliptic equation, and we also show numerical
spectral stability. However, we also identify the source of nonlinear
instability in the case described in Kevrekidis et al. Finally, we present a
new class of breather solution for mKdV, believed to exist from geometric
considerations, and which is periodic in time and space, but has nonzero mean,
unlike standard breathers.Comment: 55 pages; This paper is an improved version of our previous paper
1309.0625 and hence we replace i
A critical analysis of vacancy-induced magnetism in mono and bilayer graphene
The observation of intrinsic magnetic order in graphene and graphene-based
materials relies on the formation of magnetic moments and a sufficiently strong
mutual interaction. Vacancies are arguably considered the primary source of
magnetic moments. Here we present an in-depth density functional theory study
of the spin-resolved electronic structure of (monoatomic) vacancies in graphene
and bilayer graphene. We use two different methodologies: supercell
calculations with the SIESTA code and cluster-embedded calculations with the
ALACANT package. Our results are conclusive: The vacancy-induced extended
magnetic moments, which present long-range interactions and are capable of
magnetic ordering, vanish at any experimentally relevant vacancy concentration.
This holds for -bond passivated and un-passivated reconstructed
vacancies, although, for the un-passivated ones, the disappearance of the
magnetic moments is accompanied by a very large magnetic susceptibility. Only
for the unlikely case of a full -bond passivation, preventing the
reconstruction of the vacancy, a full value of 1 for the extended
magnetic moment is recovered for both mono and bilayer cases. Our results put
on hold claims of vacancy-induced ferromagnetic or antiferromagnetic order in
graphene-based systems, while still leaving the door open to -type
paramagnetism.Comment: Submitted to Phys. Rev B, 9 page
- …