30 research outputs found

    Microsatellite markers reveal shallow genetic differentiation between cohorts of the common sea urchin Paracentrotus lividus (Lamarck) in northwest Mediterranean

    Get PDF
    Temporal variability was studied in the common sea urchin Paracentrotus lividus through the analysis of the genetic composition of three yearly cohorts sampled over two consecutive springs in a locality in northwestern Mediterranean. Individuals were aged using growth ring patterns observed in tests and samples were genotyped for five microsatellite loci. No reduction of genetic diversity was observed relative to a sample of the adult population from the same location or within cohorts across years. FST and amova results indicated that the differentiation between cohorts is rather shallow and not significant, as most variability is found within cohorts and within individuals. This mild differentiation translated into estimates of effective population size of 90-100 individuals. When the observed excess of homozygotes was taken into account, the estimate of the average number of breeders increased to c. 300 individuals. Given our restricted sampling area and the known small-scale heterogeneity in recruitment in this species, our results suggest that at stretches of a few kilometres of shoreline, large numbers of progenitors are likely to contribute to the larval pool at each reproduction event. Intercohort variation in our samples is six times smaller than spatial variation between adults of four localities in the western Mediterranean. Our results indicate that, notwithstanding the stochastic events that take place during the long planktonic phase and during the settlement and recruitment processes, reproductive success in this species is high enough to produce cohorts genetically diverse and with little differentiation between them. Further research is needed before the link between genetic structure and underlying physical and biological processes can be well established

    To denoise or to cluster? That is not the question. Optimizing pipelines for COI metabarcoding and metaphylogeography

    Get PDF
    Background: The recent blooming of metabarcoding applications to biodiversity studies comes with some relevant methodological debates. One such issue concerns the treatment of reads by denoising or by clustering methods, which have been wrongly presented as alternatives. It has also been suggested that denoised sequence variants should replace clusters as the basic unit of metabarcoding analyses, missing the fact that sequence clusters are a proxy for species-level entities, the basic unit in biodiversity studies. We argue here that methods developed and tested for ribosomal markers have been uncritically applied to highly variable markers such as cytochrome oxidase I (COI) without conceptual or operational (e.g., parameter setting) adjustment. COI has a naturally high intraspecies variability that should be assessed and reported, as it is a source of highly valuable information. We contend that denoising and clustering are not alternatives. Rather, they are complementary and both should be used together in COI metabarcoding pipelines. Results: Using a COI dataset from benthic marine communities, we compared two denoising procedures (based on the UNOISE3 and the DADA2 algorithms), set suitable parameters for denoising and clustering, and applied these steps in diferent orders. Our results indicated that the UNOISE3 algorithm preserved a higher intra-cluster variability. We introduce the program DnoisE to implement the UNOISE3 algorithm taking into account the natural variability (measured as entropy) of each codon position in protein-coding genes. This correction increased the number of sequences retained by 88%. The order of the steps (denoising and clustering) had little infuence on the fnal outcome. Conclusions: We highlight the need for combining denoising and clustering, with adequate choice of stringency parameters, in COI metabarcoding. We present a program that uses the coding properties of this marker to improve the denoising step. We recommend researchers to report their results in terms of both denoised sequences (a proxy for haplotypes) and clusters formed (a proxy for species), and to avoid collapsing the sequences of the latter into a single representative. This will allow studies at the cluster (ideally equating species-level diversity) and at the intra-cluster level, and will ease additivity and comparability between studies

    DNA metabarcoding of littoral hard-bottom communities: high diversity and database gaps revealed by two molecular markers

    Get PDF
    Biodiversity assessment of marine hard-bottom communities is hindered by the high diversity and size-ranges of the organisms present. We developed a DNA metabarcoding protocol for biodiversity characterization of structurally complex natural marine hard-bottom communities. We used two molecular markers: the "Leray fragment" of mitochondrial cytochrome c oxidase (COI), for which a novel primer set was developed, and the V7 region of the nuclear small subunit ribosomal RNA (18S). Eight different shallow marine littoral communities from two National Parks in Spain (one in the Atlantic Ocean and another in the Mediterranean Sea) were studied. Samples were sieved into three size fractions from where DNA was extracted separately. Bayesian clustering was used for delimiting molecular operational taxonomic units (MOTUs) and custom reference databases were constructed for taxonomic assignment. Despite applying stringent filters, we found high values for MOTU richness (2,510 and 9,679 MOTUs with 18S and COI, respectively), suggesting that these communities host a large amount of yet undescribed eukaryotic biodiversity. Significant gaps are still found in sequence reference databases, which currently prevent the complete taxonomic assignment of the detected sequences. In our dataset, 85% of 18S MOTUs and 64% of COI MOTUs could be identified to phylum or lower taxonomic level. Nevertheless, those unassigned were mostly rare MOTUs with low numbers of reads, and assigned MOTUs comprised over 90% of the total sequence reads. The identification rate might be significantly improved in the future, as reference databases are further completed. Our results show that marine metabarcoding, currently applied mostly to plankton or sediments, can be adapted to structurally complex hard bottom samples. Thus, eukaryotic metabarcoding emerges as a robust, fast, objective and affordable method to comprehensively characterize the diversity of marine benthic communities dominated by macroscopic seaweeds and colonial or modular sessile metazoans. The 18S marker lacks species-level resolution and thus cannot be recommended to assess the detailed taxonomic composition of these communities. Our new universal primers for COI can potentially be used for biodiversity assessment with high taxonomic resolution in a wide array of marine, terrestrial or freshwater eukaryotic communities

    Enjoying the warming Mediterranean: transcriptomic responses to temperature changes of a thermophilous keystone species in benthic communities

    Get PDF
    Information about the genomic processes underlying responses to temperature changes is still limited in non‐model marine invertebrates. In this sense, transcriptomic analyses can help to identify genes potentially related to thermal responses. We here investigated, via RNA‐seq, whole‐transcriptomic responses to increased and decreased temperatures in a thermophilous keystone sea urchin, Arbacia lixula, whose populations are increasing in the Mediterranean. This species is a key driver of benthic communities' structure due to its grazing activity. We found a strong response to experimentally induced cold temperature (7°C), with 1,181 differentially expressed transcripts relative to the control condition (13°C), compared to only 179 in the warm (22°C) treatment. A total of 84 (cold treatment) and three (warm treatment) gene ontology terms were linked to the differentially expressed transcripts. At 7°C the expression of genes encoding different heat shock proteins (HSPs) was upregulated, together with apoptotic suppressor genes (e.g., Bcl2), genes involved in the infection response and/or pathogen‐recognition (e.g., echinoidin) and ATP‐associated genes, while protein biosynthesis and DNA replication pathways were downregulated. At 22°C neither HSPs induction nor activation of the previously mentioned pathways were detected, with the exception of some apoptotic‐related activities that were upregulated. Our results suggest a strong transcriptional response associated with low temperatures, and support the idea of low water temperature being a major limitation for A. lixula expansion across deep Mediterranean and northern Atlantic waters

    Low genetic diversity and recent demographic expansion in the red starfish Echinaster sepositus (Retzius 1816)

    Get PDF
    Understanding the phylogeography and genetic structure of populations and the processes responsible of patterns therein is crucial for evaluating the vulnerability of marine species and developing management strategies. In this study, we explore how past climatic events and ongoing oceanographic and demographic processes have shaped the genetic structure and diversity of the Atlanto-Mediterranean red starfish Echinaster sepositus. The species is relatively abundant in some areas of the Mediterranean Sea, but some populations have dramatically decreased over recent years due to direct extraction for ornamental aquariums and souvenir industries. Analyses across most of the distribution range of the species based on the mitochondrial cytochrome c oxidase subunit I gene and eight microsatellite loci revealed very low intraspecific genetic diversity. The species showed a weak genetic structure within marine basins despite the a priori low dispersal potential of its lecithotrophic larva. Our results also revealed a very recent demographic expansion across the distribution range of the species. The genetic data presented here indicate that the species might be highly vulnerable, due to its low intraspecific genetic diversity

    Long telomeres are associated with clonality in wild populations of the fissiparous starfish Coscinasterias tenuispina

    Get PDF
    elomeres usually shorten during an organism's lifespan and have thus been used as an aging and health marker. When telomeres become sufficiently short, senescence is induced. The most common method of restoring telomere length is via telomerase reverse transcriptase activity, highly expressed during embryogenesis. However, although asexual reproduction from adult tissues has an important role in the life cycles of certain species, its effect on the aging and fitness of wild populations, as well as its implications for the long-term survival of populations with limited genetic variation, is largely unknown. Here we compare relative telomere length of 58 individuals from four populations of the asexually reproducing starfish Coscinasterias tenuispina. Additionally, 12 individuals were used to compare telomere lengths in regenerating and non-regenerating arms, in two different tissues (tube feet and pyloric cecum). The level of clonality was assessed by genotyping the populations based on 12 specific microsatellite loci and relative telomere length was measured via quantitative PCR. The results revealed significantly longer telomeres in Mediterranean populations than Atlantic ones as demonstrated by the Kruskal-Wallis test (K=24.17, significant value: P-value<0.001), with the former also characterized by higher levels of clonality derived from asexual reproduction. Telomeres were furthermore significantly longer in regenerating arms than in non-regenerating arms within individuals (pyloric cecum tissue: Mann-Whitney test, V=299, P-value<10−6; and tube feet tissue Student's t=2.28, P-value=0.029). Our study suggests that one of the mechanisms responsible for the long-term somatic maintenance and persistence of clonal populations is telomere elongation

    Stochasticity in space, persistence in time: genetic heterogeneity in harbour populations of the introduced ascidian Styela plicata

    Get PDF
    Spatio-temporal changes in genetic structure among populations provide crucial information on the dynamics of secondary spread for introduced marine species. However, temporal components have rarely been taken into consideration when studying the population genetics of non-indigenous species. This study analysed the genetic structure of Styela plicata, a solitary ascidian introduced in harbours and marinas of tropical and temperate waters, across spatial and temporal scales. A fragment of the mitochondrial gene Cytochrome Oxidase subunit I (COI) was sequenced from 395 individuals collected at 9 harbours along the NW Mediterranean coast and adjacent Atlantic waters (> 1,200 km range) at two time points 5 years apart (2009 and 2014). The levels of gene diversity were relatively low for all 9 locations in both years. Analyses of genetic differentiation and distribution of molecular variance revealed strong genetic structure, with significant differences among many populations, but no significant differences among years. A weak and marginally significant correlation between geographic distance and gene differentiation was found. Our results revealed spatial structure and temporal genetic homogeneity in S. plicata, suggesting a limited role of recurrent, vessel-mediated transport of organisms among small to medium-size harbours. Our study area is representative of many highly urbanized coasts with dense harbours. In these environments, the episodic chance arrival of colonisers appears to determine the genetic structure of harbour populations and the genetic composition of these early colonising individuals persists in the respective harbours, at least over moderate time frames (five years) that encompass ca. 20 generations of S. plicata

    Efficiency of artificial collectors for quantitative assessment of sea urchin settlement rates

    Get PDF
    Summary: We tested the suitability of three different kinds of artificial collectors designed for quantitative assessment of echinoid settlement rates: (1) nylon nets containing plastic biofilter balls, (2) vertical scrub brushes with vegetal bristles and (3) horizontal triangular mats of coconut fibre. We measured the collecting efficiency by counting the number of post-larvae of two sea urchin species (Paracentrotus lividus and Arbacia lixula) gathered by each collector and deployed in two geographic areas: Tenerife (Canary Islands, eastern Atlantic) and Tossa de Mar (Costa Brava, northwestern Mediterranean). The plastic biofilter ball collector proved to be the most efficient design, collecting more settlers of both sea urchin species under all assayed conditions and showing a higher reproducibility than the other two designs. We therefore suggest using plastic biofilter balls in future studies aimed at quantifying echinoid settlement rates

    East is East and West is West: Population genomics and hierarchical analyses reveal genetic structure and adaptation footprints in the keystone species Paracentrotus lividus (Echinoidea)

    Get PDF
    Aim The Atlanto‐Mediterranean edible purple sea urchin, Paracentrotus lividus, is a commercially exploited keystone species in benthic communities. Its browsing activity can deeply modify the littoral landscape, and changes in its abundance are of major conservation concern. This species is facing nowadays contrasting anthropogenic pressures linked to predator release, exploitation and sea warming. Management of this key species requires knowledge of its genetic structure, connectivity and local adaptation. Our goal was to assess the current global status of the species under a genomic perspective. Location Atlanto‐Mediterranean shores from Morocco and France to Turkey. Methods We used genotyping by sequencing (GBS) of 241 individuals belonging to 11 populations spanning the known range of distribution of the species. We obtained 3,348 loci for population genomics and outlier analyses. Results We identified significant genetic structure and a gradient matching the longitudinal position of the localities. A hierarchical analysis revealed two main clusters (Atlantic and Mediterranean) and subtler patterns of differentiation within them. Candidate markers for selection identified between and within these two main clusters were mostly different, likely indicating different selective pressures. Adaptation to maximum salinity and maximum temperature appeared as an important driver of the transition between Atlantic and Mediterranean basins. Other stressors, such as minimum temperature or range of temperature, seem to define the structuring within the Mediterranean

    The two sides of the Mediterranean: Population genomics of the Black Sea urchin Arbacia lixula (Linnaeus 1758) in a Warming Sea

    Get PDF
    Global environmental changes may have a profound impact on ecosystems. In this context, it is crucial to gather biological and ecological information of the main species in marine communities to predict and mitigate potential effects of shifts in their distribution, abundance, and interactions. Using genotyping by sequencing (GBS), we assessed the genetic structure of a keystone species in the Mediterranean shallow littoral ecosystems, the black sea urchin Arbacia lixula. This bioengineer species can shape their communities due to its grazing activity and it is experiencing an ongoing expansion with increasing temperatures. The population genomic analyses on 5,241 loci sequenced in 240 individuals from 11 Mediterranean sampled populations revealed that all populations were diverse and showed significant departure from equilibrium. Albeit genetic differentiation was in general shallow, a significant break separated the western and eastern Mediterranean populations, a break not detected in previous studies with less resolutive markers. Notably, no clear effect of the Almería-Oran front, an important break in the Atlanto-Mediterranean transition, could be detected among the western basin populations, where only a slight differentiation of the two northernmost populations was found. Despite the generally low levels of genetic differentiation found, we identified candidate regions for local adaptation by combining different genomic analysis with environmental data. Salinity, rather than temperature, seemed to be an important driver of genetic structure in A. lixula. Overall, from a population genomics standpoint, there is ample scope for A. lixula to continue thriving and adapting in the warming Mediterranean
    corecore