2 research outputs found

    Neural Summarization of Electronic Health Records

    Full text link
    Hospital discharge documentation is among the most essential, yet time-consuming documents written by medical practitioners. The objective of this study was to automatically generate hospital discharge summaries using neural network summarization models. We studied various data preparation and neural network training techniques that generate discharge summaries. Using nursing notes and discharge summaries from the MIMIC-III dataset, we studied the viability of the automatic generation of various sections of a discharge summary using four state-of-the-art neural network summarization models (BART, T5, Longformer and FLAN-T5). Our experiments indicated that training environments including nursing notes as the source, and discrete sections of the discharge summary as the target output (e.g. "History of Present Illness") improve language model efficiency and text quality. According to our findings, the fine-tuned BART model improved its ROUGE F1 score by 43.6% against its standard off-the-shelf version. We also found that fine-tuning the baseline BART model with other setups caused different degrees of improvement (up to 80% relative improvement). We also observed that a fine-tuned T5 generally achieves higher ROUGE F1 scores than other fine-tuned models and a fine-tuned FLAN-T5 achieves the highest ROUGE score overall, i.e., 45.6. For majority of the fine-tuned language models, summarizing discharge summary report sections separately outperformed the summarization the entire report quantitatively. On the other hand, fine-tuning language models that were previously instruction fine-tuned showed better performance in summarizing entire reports. This study concludes that a focused dataset designed for the automatic generation of discharge summaries by a language model can produce coherent Discharge Summary sections

    Generative Benchmark Creation for Table Union Search

    Full text link
    Data management has traditionally relied on synthetic data generators to generate structured benchmarks, like the TPC suite, where we can control important parameters like data size and its distribution precisely. These benchmarks were central to the success and adoption of database management systems. But more and more, data management problems are of a semantic nature. An important example is finding tables that can be unioned. While any two tables with the same cardinality can be unioned, table union search is the problem of finding tables whose union is semantically coherent. Semantic problems cannot be benchmarked using synthetic data. Our current methods for creating benchmarks involve the manual curation and labeling of real data. These methods are not robust or scalable and perhaps more importantly, it is not clear how robust the created benchmarks are. We propose to use generative AI models to create structured data benchmarks for table union search. We present a novel method for using generative models to create tables with specified properties. Using this method, we create a new benchmark containing pairs of tables that are both unionable and non-unionable but related. We thoroughly evaluate recent existing table union search methods over existing benchmarks and our new benchmark. We also present and evaluate a new table search methods based on recent large language models over all benchmarks. We show that the new benchmark is more challenging for all methods than hand-curated benchmarks, specifically, the top-performing method achieves a Mean Average Precision of around 60%, over 30% less than its performance on existing manually created benchmarks. We examine why this is the case and show that the new benchmark permits more detailed analysis of methods, including a study of both false positives and false negatives that were not possible with existing benchmarks
    corecore