118 research outputs found
Most Likely Separation of Intensity and Warping Effects in Image Registration
This paper introduces a class of mixed-effects models for joint modeling of
spatially correlated intensity variation and warping variation in 2D images.
Spatially correlated intensity variation and warp variation are modeled as
random effects, resulting in a nonlinear mixed-effects model that enables
simultaneous estimation of template and model parameters by optimization of the
likelihood function. We propose an algorithm for fitting the model which
alternates estimation of variance parameters and image registration. This
approach avoids the potential estimation bias in the template estimate that
arises when treating registration as a preprocessing step. We apply the model
to datasets of facial images and 2D brain magnetic resonance images to
illustrate the simultaneous estimation and prediction of intensity and warp
effects
Lung Segmentation from Chest X-rays using Variational Data Imputation
Pulmonary opacification is the inflammation in the lungs caused by many
respiratory ailments, including the novel corona virus disease 2019 (COVID-19).
Chest X-rays (CXRs) with such opacifications render regions of lungs
imperceptible, making it difficult to perform automated image analysis on them.
In this work, we focus on segmenting lungs from such abnormal CXRs as part of a
pipeline aimed at automated risk scoring of COVID-19 from CXRs. We treat the
high opacity regions as missing data and present a modified CNN-based image
segmentation network that utilizes a deep generative model for data imputation.
We train this model on normal CXRs with extensive data augmentation and
demonstrate the usefulness of this model to extend to cases with extreme
abnormalities.Comment: Accepted to be presented at the first Workshop on the Art of Learning
with Missing Values (Artemiss) hosted by the 37th International Conference on
Machine Learning (ICML). Source code, training data and the trained models
are available here: https://github.com/raghavian/lungVAE
Simultaneous synthesis of FLAIR and segmentation of white matter hypointensities from T1 MRIs
Segmenting vascular pathologies such as white matter lesions in Brain
magnetic resonance images (MRIs) require acquisition of multiple sequences such
as T1-weighted (T1-w) --on which lesions appear hypointense-- and fluid
attenuated inversion recovery (FLAIR) sequence --where lesions appear
hyperintense--. However, most of the existing retrospective datasets do not
consist of FLAIR sequences. Existing missing modality imputation methods
separate the process of imputation, and the process of segmentation. In this
paper, we propose a method to link both modality imputation and segmentation
using convolutional neural networks. We show that by jointly optimizing the
imputation network and the segmentation network, the method not only produces
more realistic synthetic FLAIR images from T1-w images, but also improves the
segmentation of WMH from T1-w images only.Comment: Conference on Medical Imaging with Deep Learning MIDL 201
Robust training of recurrent neural networks to handle missing data for disease progression modeling
Disease progression modeling (DPM) using longitudinal data is a challenging
task in machine learning for healthcare that can provide clinicians with better
tools for diagnosis and monitoring of disease. Existing DPM algorithms neglect
temporal dependencies among measurements and make parametric assumptions about
biomarker trajectories. In addition, they do not model multiple biomarkers
jointly and need to align subjects' trajectories. In this paper, recurrent
neural networks (RNNs) are utilized to address these issues. However, in many
cases, longitudinal cohorts contain incomplete data, which hinders the
application of standard RNNs and requires a pre-processing step such as
imputation of the missing values. We, therefore, propose a generalized training
rule for the most widely used RNN architecture, long short-term memory (LSTM)
networks, that can handle missing values in both target and predictor
variables. This algorithm is applied for modeling the progression of
Alzheimer's disease (AD) using magnetic resonance imaging (MRI) biomarkers. The
results show that the proposed LSTM algorithm achieves a lower mean absolute
error for prediction of measurements across all considered MRI biomarkers
compared to using standard LSTM networks with data imputation or using a
regression-based DPM method. Moreover, applying linear discriminant analysis to
the biomarkers' values predicted by the proposed algorithm results in a larger
area under the receiver operating characteristic curve (AUC) for clinical
diagnosis of AD compared to the same alternatives, and the AUC is comparable to
state-of-the-art AUCs from a recent cross-sectional medical image
classification challenge. This paper shows that built-in handling of missing
values in LSTM network training paves the way for application of RNNs in
disease progression modeling.Comment: 9 pages, 1 figure, MIDL conferenc
Training recurrent neural networks robust to incomplete data: application to Alzheimer's disease progression modeling
Disease progression modeling (DPM) using longitudinal data is a challenging
machine learning task. Existing DPM algorithms neglect temporal dependencies
among measurements, make parametric assumptions about biomarker trajectories,
do not model multiple biomarkers jointly, and need an alignment of subjects'
trajectories. In this paper, recurrent neural networks (RNNs) are utilized to
address these issues. However, in many cases, longitudinal cohorts contain
incomplete data, which hinders the application of standard RNNs and requires a
pre-processing step such as imputation of the missing values. Instead, we
propose a generalized training rule for the most widely used RNN architecture,
long short-term memory (LSTM) networks, that can handle both missing predictor
and target values. The proposed LSTM algorithm is applied to model the
progression of Alzheimer's disease (AD) using six volumetric magnetic resonance
imaging (MRI) biomarkers, i.e., volumes of ventricles, hippocampus, whole
brain, fusiform, middle temporal gyrus, and entorhinal cortex, and it is
compared to standard LSTM networks with data imputation and a parametric,
regression-based DPM method. The results show that the proposed algorithm
achieves a significantly lower mean absolute error (MAE) than the alternatives
with p < 0.05 using Wilcoxon signed rank test in predicting values of almost
all of the MRI biomarkers. Moreover, a linear discriminant analysis (LDA)
classifier applied to the predicted biomarker values produces a significantly
larger AUC of 0.90 vs. at most 0.84 with p < 0.001 using McNemar's test for
clinical diagnosis of AD. Inspection of MAE curves as a function of the amount
of missing data reveals that the proposed LSTM algorithm achieves the best
performance up until more than 74% missing values. Finally, it is illustrated
how the method can successfully be applied to data with varying time intervals.Comment: arXiv admin note: substantial text overlap with arXiv:1808.0550
Intelligent Street Light System Automated Street Lights Based on Vehicle Detection
Sensors have become a day-to-day feature in our lives. Nowadays most mobile phones are equipped with fingerprint sensors, motion sensors & the newly arrived iris scanners. These sensors are provided as a form of biometrics to the device. But sensors can have a lot of other applications. One such application is to control various electronic gadgets according to the need of the user. Controlling street lights on detection of a vehicle where the traffic density is low is a great example of it. Sensor based system to detect a vehicle & turning on the respective street lights can help save a lot of city?s electricity budget. The main aspect of this project is to perform timely functionalities as soon as the sensor detects the vehicle. So, on detection of a vehicle the system triggers the next few street lights to turn on in an orderly sequence. As soon as the vehicle passes by, the street lights are turned off after a certain amount of time & a lot of energy is saved
- …