18 research outputs found

    Syngenicity

    No full text

    The cross correlation of the ABS and ACT maps

    Get PDF
    International audienceOne of the most important checks for systematic errors in CMB studies is the cross correlation of maps made by independent experiments. In this paper we report on the cross correlation between maps from the Atacama B-mode Search (ABS) and Atacama Cosmology Telescope (ACT) experiments in both temperature and polarization. These completely different measurements have a clear correlation with each other and with the Planck satellite in both the EE and TE spectra at &ell;<400 over the roughly 0110 deg2 common to all three. The TB, EB, and BB cross spectra are consistent with noise. Exploiting such cross-correlations will be important for future experiments operating in Chile that aim to probe the 30<&ell;<8,000 range

    Orogenic gold mineralization hosted by Archaean basement rocks at Sortekap, Kangerlussuaq area, east Greenland

    No full text
    A gold-bearing quartz vein system has been identified in Archaean basement rocks at Sortekap in the Kangerlussuaq region of east Greenland, 35 km north–northeast of the Skaergaard Intrusion. This constitutes the first recorded occurrence of Au mineralisation in the metamorphic basement rocks of east Greenland. The mineralisation can be classified as orogenic style, quartz vein-hosted Au mineralisation. Two vein types have been identified based on their alteration styles and the presence of Au mineralisation. Mineralised type 1 veins occur within sheared supracrustal units and are hosted by garnet-bearing amphibolites, with associated felsic and ultramafic intrusions. Gold is present as native Au and Au-rich electrum together with arsenopyrite and minor pyrite and chalcopyrite in thin alteration selvages in the immediate wall rocks. The alteration assemblage of actinolite-clinozoisite-muscovite-titanite-scheelite-arsenopyrite-pyrite is considered to be a greenschist facies assemblage. The timing of mineralisation is therefore interpreted as being later and separate event to the peak amphibolite facies metamorphism of the host rocks. Type 2 quartz veins are barren of mineralisation, lack significant alteration of the wall rocks and are considered to be later stage. Fluid inclusion microthermometry of the quartz reveals three separate fluids, including a high temperature (T &lt;sub&gt;h&lt;/sub&gt;  = 300–350 °C), H&lt;sub&gt;2&lt;/sub&gt;O–CO&lt;sub&gt;2&lt;/sub&gt;–CH&lt;sub&gt;4&lt;/sub&gt; fluid present only in type 1 veins that in interpreted to be responsible for the main stage of Au deposition and sulphidic wall rock alteration. It is likely that the carbonic fluids were actually trapped at temperatures closer to 400 °C. Two other fluids were identified within both vein types, which comprise low temperature (100–200 °C) brines, with salinities of 13–25 wt% eq. NaCl and at least one generation of low salinity aqueous fluids. The sources and timings of the secondary fluids are currently equivocal but they may be related to the emplacement of Paleogene mafic intrusions. The identification of this occurrence of orogenic-style Au mineralisation has implications for exploration in the underexplored area of east Greenland between 62 and 69° N, where other, similar supracrustal units are known to be present.&lt;p&gt;&lt;/p&gt
    corecore