41,801 research outputs found
CCDM model from quantum particle creation: constraints on dark matter mass
In this work the results from the quantum process of matter creation have
been used in order to constrain the mass of the dark matter particles in an
accelerated Cold Dark Matter model (Creation Cold Dark Matter, CCDM). In order
to take into account a back reaction effect due to the particle creation
phenomenon, it has been assumed a small deviation for the scale
factor in the matter dominated era of the form .
Based on recent data, the best fit values for the mass of dark matter
created particles and the parameter have been found as
GeV, restricted to a 68.3\% c.l. interval of
() GeV and at
68.3\% c.l. For these best fit values the model correctly recovers a transition
from decelerated to accelerated expansion and admits a positive creation rate
near the present era. Contrary to recent works in CCDM models where the
creation rate was phenomenologically derived, here we have used a quantum
mechanical result for the creation rate of real massive scalar particles, given
a self consistent justification for the physical process. This method also
indicates a possible solution to the so called "dark degeneracy", where one can
not distinguish if it is the quantum vacuum contribution or quantum particle
creation which accelerates the Universe expansion.Comment: 16 pages, 5 figures. Major modifications have been done, following
the referee suggestions. The deduction of the treatment is now more
transparent, figures have been added showing the statistical limits over the
dark matter mass, and the best fit for DM mass has been slightly modifie
Tunable quantum dots in bilayer graphene
We demonstrate theoretically that quantum dots in bilayers of graphene can be
realized. A position-dependent doping breaks the equivalence between the upper
and lower layer and lifts the degeneracy of the positive and negative momentum
states of the dot. Numerical results show the simultaneous presence of electron
and hole confined states for certain doping profiles and a remarkable angular
momentum dependence of the quantum dot spectrum which is in sharp contrast with
that for conventional semiconductor quantum dots. We predict that the optical
spectrum will consist of a series of non-equidistant peaks.Comment: 5 pages, to appear in Nano Letter
Landau levels and oscillator strength in a biased bilayer of graphene
We obtain analytical expressions for the eigenstates and the Landau level
spectrum of biased graphene bilayers in a magnetic field. The calculations are
performed in the context of a four-band continuum model and generalize previous
approximate results. Solutions are presented for the spectrum as a function of
interlayer coupling, the potential difference between the layers and the
magnetic field. The explicit expressions allow us to calculate the oscillator
strength and the selection rules for electric dipole transitions between the
Landau states. Some transitions are significantly shifted in energy relative to
those in an unbiased bialyer and exhibit a very different magnetic field
dependence.Comment: To appear in Phys. Rev.
- …