388 research outputs found
AEROBIC AND ANAEROBIC METABOLISM DURING LOCOMOTION WITH TWO DIFFERENT WHEELCHAIR TYPES
Wheelchair design is extremely important in order to improve efficiency of locomotion and reduce physical stress in subjects whose muscular and cardiopulmonary fitness are impaired. Purpose of this study was to evaluate the effect of different wheelchair design on the aerobic and anaerobic metabolism during locomotion at different speeds in paraplegic subjects. The experiments were carried out on a group of 5 male paraplegic subjects (25 ±3 years; body weight 65±7kg) during locomotion on a roller ergometer (Sopur, Ergotronic mod.) at 3-4 different speeds from 2 to 9 km/h. At each speed oxygen consumption and heart rate were determined after at least 6 min of exercise. Lactic acid (LA) venous blood concentration was evaluated before and at the 5th min of recovery and lactate production was calculated. The oxygen equivalent of LA was assumed to be 3.15ml O2 per kg body weight for an increase of blood LA of 1 mmol/L. For each subject the test was repeated using two different types of daily use active wheelchairs: type A., foldable, 13.95kg; type B, demountable, 13.35kg. The main difference in size was in the horizontal location of the wheel axle, in seat height and in handrim diameter. Results indicate that: a) oxygen consumption increased linearly with speed being 2050±350ml/min and 1780±270ml/min at 9km/h for wheelchair type A and B, respectively; b)lactic acid concentrations were significantly higher, at a given speed, while using wheelchair type A than B (at 9km/h; 7.4±1.5 mmol/l and 6.0±1.6 mmol/l, respectively),c) the total energy required , aerobic and anaerobic, increased linearly with speed and was 15-20% higher with wheelchair type A than B at all speeds; d) the energy cost of locomotion at a given speed was in the 15-25% range higher for wheelchair A than B; e) at corresponding oxygen uptake, heart rate and pulmonary ventilation were not different with the two wheelchair types. The main results of this study concern the large difference existing in the energy cost of locomotion and in the lactate production in the same subject when two different wheelchairs, even if apparently similar are used. In particular the much higher lactate production suggests that wheelchair design affects the limb and trunk movements in such a way that the metabolism of some muscle group requires a greater participation of anaerobic mechanism of energy supply, this leading to early onset of muscular fatigue. Further studies, in particular the combined biomechanical analysis of user and wheelchair during locomotion are required to increase the optimum fitting of wheelchair –user interface
Critical role for prokineticin 2 in CNS autoimmunity
Objective: To investigate the potential role of prokineticin 2 (PK2), a bioactive peptide involved in multiple biological functions including immune modulation, in CNS autoimmune demyelinating disease.
Methods: We investigated the expression of PK2 in mice with experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS), and in patients with relapsing-remitting MS. We evaluated the biological effects of PK2 on expression of EAE and on development of T-cell response against myelin by blocking PK2 in vivo with PK2 receptor antagonists. We treated with PK2 immune cells activated against myelin antigen to explore the immune-modulating effects of this peptide in vitro.
Results: Pk2 messenger RNA was upregulated in spinal cord and lymph node cells (LNCs) of mice with EAE. PK2 protein was expressed in EAE inflammatory infiltrates and was increased in sera during EAE. In patients with relapsing-remitting MS, transcripts for PK2 were significantly increased in peripheral blood mononuclear cells compared with healthy controls, and PK2 serum concentrations were significantly higher. A PK2 receptor antagonist prevented or attenuated established EAE in chronic and relapsing-remitting models, reduced CNS inflammation and demyelination, and decreased the production of interferon (IFN)-γ and interleukin (IL)-17A cytokines in LNCs while increasing IL-10. PK2 in vitro increased IFN-γ and IL-17A and reduced IL-10 in splenocytes activated against myelin antigen.
Conclusion: These data suggest that PK2 is a critical immune regulator in CNS autoimmune demyelination and may represent a new target for therapy
Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation
The development of inflammatory diseases implies inactivation of regulatory T (Treg) cells through mechanisms that still are largely unknown. Here we showed that mast cells (MCs), an early source of inflammatory mediators, are able to counteract Treg inhibition over effector T cells. To gain insight into the molecules involved in their interplay, we set up an in vitro system in which all 3 cellular components were put in contact. Reversal of Treg suppression required T cell-derived interleukin-6 (IL-6) and the OX40/OX40L axis. In the presence of activated MCs, concomitant abundance of IL-6 and paucity of Th1/Th2 cytokines skewed Tregs and effector T cells into IL-17-producing T cells (Th17). In vivo analysis of lymph nodes hosting T-cell priming in experimental autoimmune encephalomyelitis revealed activated MCs, Tregs, and Th17 cells displaying tight spatial interactions, further supporting the occurrence of an MC-mediated inhibition of Treg suppression in the establishment of Th17-mediated inflammatory responses. © 2009 by The American Society of Hematology
Actual performance of mechanical ventilators in ICU: a multicentric quality control study.
Even if the performance of a given ventilator has been evaluated in the laboratory under very well controlled conditions, inappropriate maintenance and lack of long-term stability and accuracy of the ventilator sensors may lead to ventilation errors in actual clinical practice. The aim of this study was to evaluate the actual performances of ventilators during clinical routines. A resistance (7.69 cmH(2)O/L/s) - elastance (100 mL/cmH(2)O) test lung equipped with pressure, flow, and oxygen concentration sensors was connected to the Y-piece of all the mechanical ventilators available for patients in four intensive care units (ICUs; n = 66). Ventilators were set to volume-controlled ventilation with tidal volume = 600 mL, respiratory rate = 20 breaths/minute, positive end-expiratory pressure (PEEP) = 8 cmH(2)O, and oxygen fraction = 0.5. The signals from the sensors were recorded to compute the ventilation parameters. The average ± standard deviation and range (min-max) of the ventilatory parameters were the following: inspired tidal volume = 607 ± 36 (530-723) mL, expired tidal volume = 608 ± 36 (530-728) mL, peak pressure = 20.8 ± 2.3 (17.2-25.9) cmH(2)O, respiratory rate = 20.09 ± 0.35 (19.5-21.6) breaths/minute, PEEP = 8.43 ± 0.57 (7.26-10.8) cmH(2)O, oxygen fraction = 0.49 ± 0.014 (0.41-0.53). The more error-prone parameters were the ones related to the measure of flow. In several cases, the actual delivered mechanical ventilation was considerably different from the set one, suggesting the need for improving quality control procedures for these machines
Dopamine in Motor Cortex Is Necessary for Skill Learning and Synaptic Plasticity
Preliminary evidence indicates that dopamine given by mouth facilitates the learning of motor skills and improves the recovery of movement after stroke. The mechanism of these phenomena is unknown. Here, we describe a mechanism by demonstrating in rat that dopaminergic terminals and receptors in primary motor cortex (M1) enable motor skill learning and enhance M1 synaptic plasticity. Elimination of dopaminergic terminals in M1 specifically impaired motor skill acquisition, which was restored upon DA substitution. Execution of a previously acquired skill was unaffected. Reversible blockade of M1 D1 and D2 receptors temporarily impaired skill acquisition but not execution, and reduced long-term potentiation (LTP) within M1, a form of synaptic plasticity critically involved in skill learning. These findings identify a behavioral and functional role of dopaminergic signaling in M1. DA in M1 optimizes the learning of a novel motor skill
Erasing Sensorimotor Memories via PKMζ Inhibition
Sensorimotor cortex has a role in procedural learning. Previous studies suggested that this learning is subserved by long-term potentiation (LTP), which is in turn maintained by the persistently active kinase, protein kinase Mzeta (PKMζ). Whereas the role of PKMζ in animal models of declarative knowledge is established, its effect on procedural knowledge is not well understood. Here we show that PKMζ inhibition, via injection of zeta inhibitory peptide (ZIP) into the rat sensorimotor cortex, disrupts sensorimotor memories for a skilled reaching task even after several weeks of training. The rate of relearning the task after the memory disruption by ZIP was indistinguishable from the rate of initial learning, suggesting no significant savings after the memory loss. These results indicate a shared molecular mechanism of storage for declarative and procedural forms of memory
CD8+ T cells specific for cryptic apoptosis-associated epitopes exacerbate experimental autoimmune encephalomyelitis
The autoimmune immunopathology occurring in multiple sclerosis (MS) is sustained by myelin-specific and -nonspecific CD8(+) T cells. We have previously shown that, in MS, activated T cells undergoing apoptosis induce a CD8(+) T cell response directed against antigens that are unveiled during the apoptotic process, namely caspase-cleaved structural proteins such as non-muscle myosin and vimentin. Here, we have explored in vivo the development and the function of the immune responses to cryptic apoptosis-associated epitopes (AEs) in a well-established mouse model of MS, experimental autoimmune encephalomyelitis (EAE), through a combination of immunization approaches, multiparametric flow cytometry, and functional assays. First, we confirmed that this model recapitulated the main findings observed in MS patients, namely that apoptotic T cells and effector/memory AE-specific CD8(+) T cells accumulate in the central nervous system of mice with EAE, positively correlating with disease severity. Interestingly, we found that AE-specific CD8(+) T cells were present also in the lymphoid organs of unprimed mice, proliferated under peptide stimulation in vitro, but failed to respond to peptide immunization in vivo, suggesting a physiological control of this response. However, when mice were immunized with AEs along with EAE induction, AE-specific CD8(+) T cells with an effector/memory phenotype accumulated in the central nervous system, and the disease severity was exacerbated. In conclusion, we demonstrate that AE-specific autoimmunity may contribute to immunopathology in neuroinflammation
The Self Model and the Conception of Biological Identity in Immunology
The self/non-self model, first proposed by F.M. Burnet, has dominated immunology for sixty years now. According to this model, any foreign element will trigger an immune reaction in an organism, whereas endogenous elements will not, in normal circumstances, induce an immune reaction. In this paper we show that the self/non-self model is no longer an appropriate explanation of experimental data in immunology, and that this inadequacy may be rooted in an excessively strong metaphysical conception of biological identity. We suggest that another hypothesis, one based on the notion of continuity, gives a better account of immune phenomena. Finally, we underscore the mapping between this metaphysical deflation from self to continuity in immunology and the philosophical debate between substantialism and empiricism about identity
Tackling amyloidogenesis in Alzheimer's disease with A2V variants of Amyloid-β
We developed a novel therapeutic strategy for Alzheimer’s disease (AD) exploiting the properties of a natural variant of Amyloid-β (Aβ) carrying the A2V substitution, which protects heterozygous carriers from AD by its ability to interact with wild-type Aβ, hindering conformational changes and assembly thereof. As prototypic compound we designed a six-mer mutated peptide (Aβ1-6A2V), linked to the HIV-related TAT protein, which is widely used for brain delivery and cell membrane penetration of drugs. The resulting molecule [Aβ1-6A2VTAT(D)] revealed strong anti-amyloidogenic effects in vitro and protected human neuroblastoma cells from Aβ toxicity. Preclinical studies in AD mouse models showed that short-term treatment with Aβ1-6A2VTAT(D) inhibits Aβ aggregation and cerebral amyloid deposition, but a long treatment schedule unexpectedly increases amyloid burden, although preventing cognitive deterioration. Our data support the view that the AβA2V-based strategy can be successfully used for the development of treatments for AD, as suggested by the natural protection against the disease in human A2V heterozygous carriers. The undesirable outcome of the prolonged treatment with Aβ1-6A2VTAT(D) was likely due to the TAT intrinsic attitude to increase Aβ production, avidly bind amyloid and boost its seeding activity, warning against the use of the TAT carrier in the design of AD therapeutics
- …