25 research outputs found
Spin current in ferromagnet/insulator/superconductor junctions
A theory of spin polarized tunneling spectroscopy based on a scattering
theory is given for tunneling junctions between ferromagnets and d-wave
superconductors. The spin filtering effect of an exchange field in the
insulator is also treated. We clarify that the properties of the Andreev
reflection are largely modified due to a presence of an exchange field in the
ferromagnets, and consequently the Andreev reflected quasiparticle shows an
evanescent-wave behavior depending on the injection angle of the quasiparticle.
Conductance formulas for the spin current as well as the charge current are
given as a function of the applied voltage and the spin-polarization in the
ferromagnet for arbitrary barrier heights. It is shown that the surface bound
states do not contribute to the spin current and that the zero-bias conductance
peak expected for a d-wave superconductor splits into two peaks under the
influence of the exchange interaction in the insulator.Comment: 14 pages, 11 figure
An observation of spin-valve effects in a semiconductor field effect transistor: a novel spintronic device
We present the first spintronic semiconductor field effect transistor.
The injector and collector contacts of this device were made from magnetic
permalloy thin films with different coercive fields so that they could be
magnetized either parallel or antiparallel to each other in different applied
magnetic fields. The conducting medium was a two dimensional electron gas
(2DEG) formed in an AlSb/InAs quantum well.
Data from this device suggest that its resistance is controlled by two
different types of spin-valve effect: the first occurring at the
ferromagnet-2DEG interfaces; and the second occuring in direct propagation
between contacts.Comment: 4 pages, 2 figure
On The Mobile Behavior of Solid He at High Temperatures
We report studies of solid helium contained inside a torsional oscillator, at
temperatures between 1.07K and 1.87K. We grew single crystals inside the
oscillator using commercially pure He and He-He mixtures containing
100 ppm He. Crystals were grown at constant temperature and pressure on the
melting curve. At the end of the growth, the crystals were disordered,
following which they partially decoupled from the oscillator. The fraction of
the decoupled He mass was temperature and velocity dependent. Around 1K, the
decoupled mass fraction for crystals grown from the mixture reached a limiting
value of around 35%. In the case of crystals grown using commercially pure
He at temperatures below 1.3K, this fraction was much smaller. This
difference could possibly be associated with the roughening transition at the
solid-liquid interface.Comment: 15 pages, 6 figure
Transport spin polarization of Ni_xFe_{1-x}: electronic kinematics and band structure
We present measurements of the transport spin polarization of Ni_xFe_{1-x}
(0<x<1) using the recently-developed Point Contact Andreev Reflection
technique, and compare them with our first principles calculations of the spin
polarization for this system. Surpisingly, the measured spin polarization is
almost composition-independent. The results clearly demonstrate that the sign
of the transport spin polarization does not coincide with that of the
difference of the densities of states at the Fermi level. Calculations indicate
that the independence of the spin polarization of the composition is due to
compensation of density of states and Fermi velocity in the s- and d- bands
Inhomogeneous magnetism induced in a superconductor at superconductor-ferromagnet interface
We study a magnetic proximity effect at superconductor (S) - ferromagnet (F)
interface. It is shown that due to an exchange of electrons between the F and S
metals ferromagnetic correlations extend into the superconductor, being
dependent on interface parameters. We show that ferromagnetic exchange field
pair breaking effect leads to a formation of subgap bands in the S layer local
density of states, that accommodate only one spin-polarized quasiparticles.
Equilibrium magnetization leakage into the S layer as function of SF interface
quality and a value of ferromagnetic interaction have also been calculated. We
show that a damped-oscillatory behavior versus distance from SF interface is a
distinguished feature of the exchange-induced magnetization of the S layer.Comment: 10 pages, 7 Postscript figure
Spontaneous Spin Polarized Currents in Superconductor-Ferromagnetic Metal Heterostructures
We study a simple microscopic model for thin, ferromagnetic, metallic layers
on semi-infinite bulk superconductor. We find that for certain values of the
exchange spliting, on the ferromagnetic side, the ground states of such
structures feature spontaneously induced spin polarized currents. Using a
mean-field theory, which is selfconsistent with respect to the pairing
amplitude , spin polarization and the spontaneous current
, we show that not only there are Andreev bound states in the
ferromagnet but when their energies are near zero they support
spontaneous currents parallel to the ferromagnetic-superconducting interface.
Moreover, we demonstrate that the spin-polarization of these currents depends
sensitively on the band filling.Comment: 4 pages, 5 Postscript figures (included
Spin-polarized transport and Andreev reflection in semiconductor/superconductor hybrid structures
We show that spin-polarized electron transmission across
semiconductor/superconductor (Sm/S) hybrid structures depends sensitively on
the degree of spin polarization as well as the strengths of potential and
spin-flip scattering at the interface. We demonstrate that increasing the Fermi
velocity mismatch in the Sm and S regions can lead to enhanced junction
transparency in the presence of spin polarization. We find that the Andreev
reflection amplitude at the superconducting gap energy is a robust measure of
the spin polarization magnitude, being independent of the strengths of
potential and spin-flip scattering and the Fermi velocity of the
superconductor.Comment: 4 pages, 2 figure
INFLUENCE OF HIGH MAGNETIC FIELDS ON THE COEXISTENCE CURVE OF He3AT 1.2 K
Des mesures préliminaires de l'influence de champs magnétiques intenses sur la courbe de coexistence de 3He à des températures allant de 1,22 à 1,25 K montrent que à température constante le changement de la pression de vapeur avec le champ a une pente positive de zéro à 5 ou 6 T. La pente devient ensuite négative jusque vers 15 ou 17 T, puis elle devient fortement positive jusqu'à 19,2 T. Le changement total de pression par rapport à l'équilibre est de l'ordre de 0,1% de la pression totale.Preliminary measurements of the influence of high magnetic fields on the coexistence curve of He3 at temperatures between 1.22 K and 1.25 K show that under isothermal conditions the change in the vapor pressure as a function of field has a positive slope from zero to 5 or 6 T. The slope then becomes negative up to about 15 or 17 T whereupon it becomes strongly positive up to 19.2 T. The total change in the pressure from equilibrium is of the order of 0,1 % of the total pressure