9 research outputs found
Nearby quasar remnants and ultra-high energy cosmic rays
As recently suggested, nearby quasar remnants are plausible sites of
black-hole based compact dynamos that could be capable of accelerating
ultra-high energy cosmic rays (UHECRs). In such a model, UHECRs would originate
at the nuclei of nearby dead quasars, those in which the putative underlying
supermassive black holes are suitably spun-up. Based on galactic optical
luminosity, morphological type, and redshift, we have compiled a small sample
of nearby objects selected to be highly luminous, bulge-dominated galaxies,
likely quasar remnants. The sky coordinates of these galaxies were then
correlated with the arrival directions of cosmic rays detected at energies EeV. An apparently significant correlation appears in our data. This
correlation appears at closer angular scales than those expected when taking
into account the deflection caused by typically assumed IGM or galactic
magnetic fields over a charged particle trajectory. Possible scenarios
producing this effect are discussed, as is the astrophysics of the quasar
remnant candidates. We suggest that quasar remnants be also taken into account
in the forthcoming detailed search for correlations using data from the Auger
Observatory.Comment: 2 figures, 4 tables, 11 pages. Final version to appear in Physical
Review
Rings and bars: unmasking secular evolution of galaxies
Secular evolution gradually shapes galaxies by internal processes, in
contrast to early cosmological evolution which is more rapid. An important
driver of secular evolution is the flow of gas from the disk into the central
regions, often under the influence of a bar. In this paper, we review several
new observational results on bars and nuclear rings in galaxies. They show that
these components are intimately linked to each other, and to the properties of
their host galaxy. We briefly discuss how upcoming observations, e.g., imaging
from the Spitzer Survey of Stellar Structure in Galaxies (S4G), will lead to
significant further advances in this area of research.Comment: Invited review at "Galaxies and their Masks", celebrating Ken
Freeman's 70-th birthday, Sossusvlei, Namibia, April 2010. To be published by
Springer, New York, editors D.L. Block, K.C. Freeman, & I. Puerari; minor
change
The Fueling and Evolution of AGN: Internal and External Triggers
In this chapter, I review the fueling and evolution of active galactic nuclei
(AGN) under the influence of internal and external triggers, namely intrinsic
properties of host galaxies (morphological or Hubble type, color, presence of
bars and other non-axisymmetric features, etc) and external factors such as
environment and interactions. The most daunting challenge in fueling AGN is
arguably the angular momentum problem as even matter located at a radius of a
few hundred pc must lose more than 99.99 % of its specific angular momentum
before it is fit for consumption by a BH. I review mass accretion rates,
angular momentum requirements, the effectiveness of different fueling
mechanisms, and the growth and mass density of black BHs at different epochs. I
discuss connections between the nuclear and larger-scale properties of AGN,
both locally and at intermediate redshifts, outlining some recent results from
the GEMS and GOODS HST surveys.Comment: Invited Review Chapter to appear in LNP Volume on "AGN Physics on All
Scales", Chapter 6, in press. 40 pages, 12 figures. Typo in Eq 5 correcte
Gravitationally induced inflow in Starbursts and Agn
âThe original publication is available at www.springerlink.comâ. Copyright Springer. DOI: 10.1007/s10509-005-3664-3 [Full text of this article is not available in the UHRA]There is considerable evidence that the circumnuclear regions of galaxies are intimately related to their host galaxies, most directly through their bars. There is also convincing evidence for relations between the properties of supermassive black holes in the nuclei of galaxies and those of their host galaxies. It is much less clear, however, how stellar (starburst) and non-stellar (AGN) activity in the nuclear regions can be initiated and fuelled. Here, we review the evidence for gas transport from the disk to the nuclear and circumnuclear regions of galaxies, as well as the statistical relationships between the occurrence of nuclear activity and mechanisms which can cause central gas concentration. In particular, I explore the roles played by bars and interactions, and conclude that in specific, mostly extreme, cases bars and interactions are indeed observed to be connected to nuclear activity. The overall lack of observational evidence for direct causal relationships between the presence of bars and interactions on the one hand, and starburst or Seyfert activity on the other could, however, easily be due to the possibility that we are not yet considering the correct spatial- or time-scales.Peer reviewe