8,734 research outputs found
Finite size and finite temperature studies of the spin chain
We study a quantum spin chain invariant by the superalgebra . We
derived non-linear integral equations for the row-to-row transfer matrix
eigenvalue in order to analyze its finite size scaling behaviour and we
determined its central charge. We have also studied the thermodynamical
properties of the obtained spin chain via the non-linear integral equations for
the quantum transfer matrix eigenvalue. We numerically solved these NLIE and
evaluated the specific heat and magnetic susceptibility. The analytical low
temperature analysis was performed providing a different value for the
effective central charge. The computed values are in agreement with the
numerical predictions in the literature.Comment: 26 pages, 2 figure
Fatigue crack growth rates for offshore wind monopile weldments in air and seawater: SLIC inter-laboratory test results
The majority of fatigue crack growth (FCG) data sets available on steels in air and seawater environments are several decades old and may not be appropriate for structural integrity assessment of offshore wind turbine foundations, which are fabricated using contemporary materials and welding technologies. Therefore, the SLIC joint industry project was formed to investigate the fatigue crack initiation and growth behaviour in offshore wind welded steel foundations. The FCG test data from the SLIC inter-laboratory (round robin) test programme have been analysed using a new proposed shape function solution and the results are presented and discussed. The obtained FCG trends in air and seawater environments have been compared with the recommended trends available in standards. The Paris-law constants and ΔKth values obtained from this programme can be used for defect assessment and remaining life prediction of offshore monopile weldments in air and seawater environments. The results from the SLIC project show that for a given value of ΔK the fatigue crack growth rate, da/dN, is on average around 2 times higher in seawater compared to air for the base metal and weldments. This factor of 2 in the seawater environment is almost half of the crack acceleration factor recommended by standards
Diffusion-limited deposition with dipolar interactions: fractal dimension and multifractal structure
Computer simulations are used to generate two-dimensional diffusion-limited
deposits of dipoles. The structure of these deposits is analyzed by measuring
some global quantities: the density of the deposit and the lateral correlation
function at a given height, the mean height of the upper surface for a given
number of deposited particles and the interfacial width at a given height.
Evidences are given that the fractal dimension of the deposits remains constant
as the deposition proceeds, independently of the dipolar strength. These same
deposits are used to obtain the growth probability measure through Monte Carlo
techniques. It is found that the distribution of growth probabilities obeys
multifractal scaling, i.e. it can be analyzed in terms of its
multifractal spectrum. For low dipolar strengths, the spectrum is
similar to that of diffusion-limited aggregation. Our results suggest that for
increasing dipolar strength both the minimal local growth exponent
and the information dimension decrease, while the fractal
dimension remains the same.Comment: 10 pages, 7 figure
- …