980 research outputs found

    High-resolution kinetic energy release distributions and dissociation energies for fullerene ions C(n)(+), 42 \u3c= n \u3c= 90

    Get PDF
    We have measured the kinetic energy released in the unimolecular dissociation of fullerene ions, C(n)(+)--\u3eC(n-2)(+)+C(2), for sizes 42less than or equal tonless than or equal to90. A three-sector-field mass spectrometer equipped with two electric sectors has been used in order to ensure that contributions from isotopomers of different masses do not distort the experimental kinetic energy release distributions. We apply the concept of microcanonical temperature to derive from these data the dissociation energies of fullerene cations. They are converted to dissociation energies of neutral fullerenes with help of published adiabatic ionization energies. The results are compared with literature values. (C) 2004 American Institute of Physics

    High resolution measurements of kinetic energy release distributions of neon, argon, and krypton cluster ions using a three sector field mass spectrometer

    Get PDF
    Using a newly constructed three sector field mass spectrometer (resulting in a BE1E2 field configuration) we have measured the kinetic energy release distributions of neon, argon, and krypton cluster ions. In the present study we used the first two sectors, B and E1, constituting a high resolution mass spectrometer, to select the parent ions in terms of mass, charge, and energy, and studied the decay of those ions in the third field free region. Due to the improved mass resolution we were able to extend earlier studies carried out with a two sector field machine, where an upper size limit arose from the fact that several isotopomers contribute to a decaying parent ion beam when the cluster size exceeds a certain value. Furthermore we developed a new data analysis. It allows us to model also fragment ion peaks that are a superposition of different decay reactions and thus we can determine the average kinetic energy release for all decay reactions of a given cluster ion. In a further step we used these results to determine the binding energies of cluster ions Rg(n) (ngreater than or equal to10) by applying finite heat bath theory. The smaller sizes have not been included in this analysis, because the validity of finite heat bath theory becomes questionable below napproximate to10. The present average kinetic energy releases and binding energies are compared with other experiments and various calculations. (C) 2004 American Institute of Physics

    Mechanisms and dynamics of the metastable decay in Ar-2(+)

    Get PDF
    A detailed experimental as well as theoretical investigation of the properties of the metastable dissociation Ar-2(+)--\u3eAr++Ar is presented. The mass-analyzed ion kinetic energy (MIKE) scan technique has been performed using a three sector field mass spectrometer. The possible mechanisms of the metastability of Ar-2(+) have been examined and the observed decay process is assigned to the II(1/2)(u)--\u3eI(1/2)(g) bound to continuum radiative transition, in agreement with earlier work. The calculation of the theoretical shape of the kinetic energy release distribution of fragment ions allowed us to construct the theoretical MIKE peak and compare it with the raw experimental data. The accuracy of various sets of potential energy curves for Ar-2(+) is discussed, as well as the way of production of the metastable Ar-2(+)[II(1/2)(u)] electronic state by electron impact. Excellent agreement between the experimental data and theoretical model has been observed. (C) 2004 American Institute of Physics

    Kinetic-energy release in Coulomb explosion of metastable C3H52+

    Get PDF
    C3H52+, formed by electron impact ionization of propane, undergoes metastable decay into C2H2++CH3+. We have monitored this reaction in a magnetic mass spectrometer of reversed geometry that is equipped with two electric sectors (BEE geometry). Three different techniques were applied to identify the fragment ions and determine the kinetic-energy release (KER) of spontaneous Coulomb explosion of C3H52+ in the second and third field free regions of the mass spectrometer. The KER distribution is very narrow, with a width of about 3% [root-mean square standard deviation]. An average KER of 4.58+/-0.15 eV is derived from the distribution. High level ab initio quantum-chemical calculations of the structure and energetics of C3H52+ are reported. The activation barrier of the reverse reaction, CH3++C2H2+ (vinylidene), is computed. The value closely agrees with the experimental average KER, thus indicating that essentially all energy available in the reaction is partitioned into kinetic energy. (C) 2003 American Institute of Physics

    Formation of even-numbered hydrogen cluster cations in ultracold helium droplets

    Get PDF
    Neutral hydrogen clusters are grown in ultracold helium nanodroplets by successive pickup of hydrogen molecules. Even-numbered hydrogen cluster cations are observed upon electron-impact ionization with and without attached helium atoms and in addition to the familiar odd-numbered H(n)(+). The helium matrix affects the fragmentation dynamics that usually lead to the formation of overwhelmingly odd-numbered H(n)(+). The use of high-resolution mass spectrometry allows the unambiguous identification of even-numbered H(n)(+) up to n congruent to 120 by their mass excess that distinguishes them from He(n)(+), mixed He(m)H(n)(+), and background ions. The large range in size of these hydrogen cluster ions is unprecedented, as is the accuracy of their definition. Apart from the previously observed magic number n = 6, pronounced drops in the abundance of even-numbered cluster ions are seen at n = 30 and 114, which suggest icosahedral shell closures at H(6)(+)(H(2))(12) and H(6)(+)(H(2))(54). Possible isomers of H(6)(+) are identified at the quadratic configuration interaction with inclusion of single and double excitations (QCISD)/aug-cc-pVTZ level of theory (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3035833

    Metastable anions of dinitrobenzene: resonances for electron attachment and kinetic energy release

    Get PDF
    Attachment of free, low-energy electrons to dinitrobenzene (DNB) in the gas phase leads to DNB as well as several fragment anions. DNB, (DNB-H), (DNB-NO), (DNB-2NO), and (DNB-NO(2)) are found to undergo metastable (unimolecular) dissociation. A rich pattern of resonances in the yield of these metastable reactions versus electron energy is observed; some resonances are highly isomer-specific. Most metastable reactions are accompanied by large average kinetic energy releases (KER) that range from 0.5 to 1.32 eV, typical of complex rearrangement reactions, but (1,3-DNB-H)(-) features a resonance with a KER of only 0.06 eV for loss of NO. (1,3-DNB-NO)(-) offers a rare example of a sequential metastable reaction, namely, loss of NO followed by loss of CO to yield C(5)H(4)O(-) with a large KER of 1.32 eV. The G4(MP2) method is applied to compute adiabatic electron affinities and reaction energies for several of the observed metastable channels. (C) 2010 American Institute of Physics. [doi:10.1063/1.3514931

    High resolution studies of low-energy electron attachment to SF5Cl: Product anions and absolute cross sections

    Get PDF
    Low energy electron attachment to SF5_5Cl was studied at high energy resolution by mass spectrometric detection of the product anions. Two variants of the laser photoelectron attachment (LPA) technique (Kaiserslautern) were used for determining the threshold behaviour of the yield for SF5_5^- formation at about 1 meV resolution, and to investigate the relative cross sections for Cl^-, FCl^-, and SF5_5^- formation towards higher energies (up to 1 eV) at about 20 meV resolution. Thermal swarm measurements (Birmingham) were used to place the relative LPA cross sections on an absolute scale. A trochoidal electron monochromator (Innsbruck) was used for survey measurements of the relative cross sections for the different product anions over the energy range of 0-14 eV with a resolution of 0.30 eV. Combined with earlier beam data (taken at Berlin, J. Chem. Phys. 88 (1988) 149), the present experimental results provide a detailed set of partial cross sections for anion formation in low-energy electron collisions with SF5_5Cl
    corecore