43 research outputs found
Theoretical study of the absorption spectra of the lithium dimer
For the lithium dimer we calculate cross sections for absorption of radiation
from the vibrational-rotational levels of the ground X [singlet Sigma g +]
electronic state to the vibrational levels and continua of the excited A
[singlet Sigma u +] and B [singlet Pi u] electronic states. Theoretical and
experimental data are used to characterize the molecular properties taking
advantage of knowledge recently obtained from photoassociation spectroscopy and
ultra-cold atom collision studies. The quantum-mechanical calculations are
carried out for temperatures in the range from 1000 to 2000 K and are compared
with previous calculations and measurements.Comment: 20 pages, revtex, epsf, 6 fig
A novel approach in the treatment of neuroendocrine gastrointestinal tumors: Additive antiproliferative effects of interferon-γ and meta-iodobenzylguanidine
BACKGROUND: Therapeutic options to effectively inhibit growth and spread of neuroendocrine gastrointestinal tumors are still limited. As both meta-iodobenzylguanidine (MIBG) and interferon-γ (IFNγ) cause antineoplastic effects in neuroendocrine gastrointestinal tumor cells, we investigated the antiproliferative effects of the combination of IFNγ and non-radiolabeled MIBG in neuroendocrine gut STC-1 and pancreatic carcinoid BON tumor cells. METHODS AND RESULTS: IFNγ receptors were expressed in both models. IFNγ dose- and time-dependently inhibited the growth of both STC-1 and of BON tumor cells with IC(50)-values of 95 ± 15 U/ml and 135 ± 10 U/ml, respectively. Above 10 U/ml IFNγ induced apoptosis-specific caspase-3 activity in a time-dependent manner in either cell line and caused a dose-dependent arrest in the S-phase of the cell cycle. Furthermore, IFNγ induced cytotoxic effects in NE tumor cells. The NE tumor-targeted drug MIBG is selectively taken up via norepinephrine transporters, thereby specifically inhibiting growth in NE tumor cells. Intriguingly, IFNγ treatment induced an upregulation of norepinephrine transporter expression in neuroendocrine tumors cells, as determined by semi-quantitative RT-PCR. Co-application of sub-IC(50 )concentrations of IFNγ and MIBG led to additive growth inhibitory effects, which were mainly due to increased cytotoxicity and S-phase arrest of the cell cycle. CONCLUSION: Our data show that IFNγ exerts antiproliferative effects on neuroendocrine gastrointestinal tumor cells by inducing cell cycle arrest, apoptosis and cytotoxicity. The combination of IFNγ with the NE tumor-targeted agent MIBG leads to effective growth control at reduced doses of either drug. Thus, the administration of IFNγ alone and more so, in combination with MIBG, is a promising novel approach in the treatment of neuroendocrine gastrointestinal tumors
Treatment of hepatocellular carcinoma with major portal vein thrombosis by combined therapy with subcutaneous interferon-α and intra-arterial 5-fluorouracil; role of type 1 interferon receptor expression
We previously reported the beneficial effects of combination therapy of interferon (IFN)-α/5-fluorouracil (FU) for advanced hepatocellular carcinoma (HCC) with tumour thrombi in the major portal branches. This report describes the results of longer follow-up and includes more than double the number of patients relative to the original report, and evaluates the role of IFN-α/type 2 interferon receptor (IFNAR2) expression on the response to the combination therapy. The study subjects were 55 patients with advanced HCC and tumour thrombi in the major branches of the portal vein (Vp3 or 4). They were treated with at least two courses of IFN-α/5-FU without major complication. In the 55 patients, 24 (43.6%) showed objective response (eight (14.5%) showed complete response, 16 (29.1%) partial response), four (7.3%) showed no response, and 27 (49.1%) showed progressive disease. Immunohistochemically, IFNAR2 expression was detected in nine out of 13 (69.2%) patients. There was significant difference in the time-to-progression survival (P=0.0002) and the overall survival (P<0.0001) between IFNAR2-positive and -negative cases. There was a significant correlation between IFNAR2 expression and response to IFN-α/5-FU combination therapy in univariate analysis (P=0.0070). IFN-α/5-FU combination therapy is a promising modality for advanced HCC with tumour thrombi in the major portal branches and could significantly depend on IFNAR2 expression
Hepatitis C virus RNA kinetics during the initial 12 weeks treatment with pegylated interferon-alpha 2a and ribavirin according to virological response
To optimize treatment of chronic hepatitis C early identification of patients who will not achieve a sustained virological response (SVR) is desirable. We investigated hepatitis C virus (HCV) RNA kinetics at day 1 (in 15 patients; genotypes 1 and non-1, 9 and 6 respectively) at weeks 1, 4 and 12 (in 53 patients; genotypes 1 and non-1, 19 and 34, respectively) during treatment with pegylated interferon alpha-2a and ribavirin. Patients with SVR had a significantly more pronounced mean log(10) decline from baseline in HCV RNA levels at weeks 1 and 4 compared with patients who failed to achieve SVR (1.99 vs 0.85 at week 1, P = 0.0003 and 2.89 vs 1.72 at week 4, P = 0.0159), whereas no difference was noted after day 1. For patients with a 2-log(10) decrease in HCV RNA levels at day 7, the positive predictive value (PPV) for a SVR was 92%, whereas week 12 was the best time point for predicting a later nonresponse [negative predictive value (NPV) 92%] in patients failing to achieve a 2-log(10) drop. For patients with genotype non-1 and a 2-log(10) decrease in HCV RNA levels the PPV for a SVR was 89% week 1, and 79% weeks 4 and 12. The corresponding NPV for patients with genotype non-1 were 43, 40 and 100% respectively. During treatment with pegylated interferon alpha-2a plus ribavirin the HCV RNA decline at week 1 was an accurate predictor of SVR in patients who had achieved a 2-log(10) drop in HCV RNA levels, whereas the lack of such decline week 12 was an accurate marker of a nonresponse
Eosinophil granulocytes are activated during the remission phase of ulcerative colitis
Aim: The aim of this study was to establish a method of investigating intestinal eosinophil and neutrophil granulocytes by flow cytometry, and to compare the distribution and activity of these cells in different stages of ulcerative colitis (UC). Methods: Biopsy samples were taken from six locations of the entire colon and from the terminal ileum in 10 patients with active total UC, 10 patients with inactive total UC, eight patients with active distal UC, and 11 control subjects. Cell suspensions from biopsies and from peripheral blood were incubated with fluorophore conjugated monoclonal antibodies. The use of scatter plot-gating and specific antibodies was established in a flow cytometry assay. Results: Eosinophils were more numerous and more active in patients with active UC than in controls. Interestingly, during inactive UC, the number of activated eosinophils was even larger. Eosinophil activity was high in the rectum of patients with distal colitis but was also slightly elevated in the proximal colon. Neutrophils were increased in number and activity during active but not inactive UC. In patients with distal colitis, activated neutrophils were only found in the sigmoid colon and rectum. Conclusion: With this method, we confirm that neutrophils participate in the inflammatory process during active UC, and that they express a resting phenotype during remission. The finding of activated eosinophils in inflamed intestine strengthens the view of these cells as proinflammatory and tissue damaging. Nevertheless, our new finding of high eosinophil activation during inactive UC suggests that eosinophils play a role in repair of injured epithelium