8,224 research outputs found
Sequential modular position and momentum measurements of a trapped ion mechanical oscillator
The non-commutativity of position and momentum observables is a hallmark
feature of quantum physics. However this incompatibility does not extend to
observables which are periodic in these base variables. Such modular-variable
observables have been suggested as tools for fault-tolerant quantum computing
and enhanced quantum sensing. Here we implement sequential measurements of
modular variables in the oscillatory motion of a single trapped ion, using
state-dependent displacements and a heralded non-destructive readout. We
investigate the commutative nature of modular variable observables by
demonstrating no-signaling-in-time between successive measurements, using a
variety of input states. In the presence of quantum interference, which we
enhance using squeezed input states, measurements of different periodicity show
signaling-in-time. The sequential measurements allow us to extract two-time
correlators for modular variables, which we use to violate a Leggett-Garg
inequality. The experiments involve control and coherence of multi-component
superpositions of up to 8 coherent, squeezed or Fock state wave-packets.
Signaling-in-time as well as Leggett-Garg inequalities serve as efficient
quantum witnesses which we probe here with a mechanical oscillator, a system
which has a natural crossover from the quantum to the classical regime.Comment: 6 pages, 3 figures and supplemental informatio
Orbital magnetism in axially deformed sodium clusters: From scissors mode to dia-para magnetic anisotropy
Low-energy orbital magnetic dipole excitations, known as scissors mode (SM),
are studied in alkali metal clusters. Subsequent dynamic and static effects are
explored. The treatment is based on a self-consistent microscopic approach
using the jellium approximation for the ionic background and the Kohn-Sham mean
field for the electrons. The microscopic origin of SM and its main features
(structure of the mode in light and medium clusters, separation into low- and
high-energy plasmons, coupling high-energy M1 scissors and E2 quadrupole
plasmons, contributions of shape isomers, etc) are discussed. The scissors M1
strength acquires large values with increasing cluster size. The mode is
responsible for the van Vleck paramagnetism of spin-saturated clusters. Quantum
shell effects induce a fragile interplay between Langevin diamagnetism and van
Vleck paramagnetism and lead to a remarkable dia-para anisotropy in magnetic
susceptibility of particular light clusters. Finally, several routes for
observing the SM experimentally are discussed.Comment: 21 pages, 7 figure
Eigenvalue distributions for some correlated complex sample covariance matrices
The distributions of the smallest and largest eigenvalues for the matrix
product , where is an complex Gaussian matrix
with correlations both along rows and down columns, are expressed as determinants. In the case of correlation along rows, these expressions are
computationally more efficient than those involving sums over partitions and
Schur polynomials reported recently for the same distributions.Comment: 11 page
Barrier, converting, and tray-forming properties of paperboard packaging materials coated with waterborne dispersions
In this work, different food-contact experimental and commercial aqueous polymeric dispersions were applied to paperboard via rod coating technology to achieve <5% non-cellulosic content. Barrier (water, moisture and grease), mechanical (tensile and bending) and converting (heat-sealing and creasing) properties were analysed before tray formation trials on pilot-scale equipment. Dispersion-coated samples were compared against polyethylene terephthalate (PET) extrusion-coated paperboard, the principal industrial material used for food trays. Results show that, within the investigated properties, waterborne dispersions can achieve similar barrier properties compared with PET, yet at lower dry coat grammage (12 g/m(2) vs. 40 g/m(2 )of PET-coated paperboard). Additionally, the investigated coatings heat-sealed at temperatures as low as 80-90(degrees)C, almost 100(degrees)C less than PET; however, lower seal forces could be achieved (15-20 N/(25 mm) vs. 23 N/(25 mm) of PET-coated paperboard). Paperboard delamination occurred at the highest seal forces. Dispersion-coated trays were obtained at 4.5-5.0% blank moisture content. Formed trays at industrial processing parameters showed critical coating damage during converting due to tensile stresses. This work shows that milder processing conditions allow a reduction in coat defects
Time-dependent Hamiltonian estimation for Doppler velocimetry of trapped ions
The time evolution of a closed quantum system is connected to its Hamiltonian
through Schroedinger's equation. The ability to estimate the Hamiltonian is
critical to our understanding of quantum systems, and allows optimization of
control. Though spectroscopic methods allow time-independent Hamiltonians to be
recovered, for time-dependent Hamiltonians this task is more challenging. Here,
using a single trapped ion, we experimentally demonstrate a method for
estimating a time-dependent Hamiltonian of a single qubit. The method involves
measuring the time evolution of the qubit in a fixed basis as a function of a
time-independent offset term added to the Hamiltonian. In our system the
initially unknown Hamiltonian arises from transporting an ion through a static,
near-resonant laser beam. Hamiltonian estimation allows us to estimate the
spatial dependence of the laser beam intensity and the ion's velocity as a
function of time. This work is of direct value in optimizing transport
operations and transport-based gates in scalable trapped ion quantum
information processing, while the estimation technique is general enough that
it can be applied to other quantum systems, aiding the pursuit of high
operational fidelities in quantum control.Comment: 10 pages, 8 figure
Photo-physical properties of He-related color centers in diamond
Diamond is a promising platform for the development of technological
applications in quantum optics and photonics. The quest for color centers with
optimal photo-physical properties has led in recent years to the search for
novel impurity-related defects in this material. Here, we report on a
systematic investigation of the photo-physical properties of two He-related
(HR) emission lines at 535 nm and 560 nm created in three different diamond
substrates upon implantation with 1.3 MeV He+ ions and subsequent annealing.
The spectral features of the HR centers were studied in an "optical grade"
diamond substrate as a function of several physical parameters, namely the
measurement temperature, the excitation wavelength and the intensity of
external electric fields. The emission lifetimes of the 535 nm and 560 nm lines
were also measured by means of time-gated photoluminescence measurements,
yielding characteristic decay times of (29 +- 5) ns and (106 +- 10) ns,
respectively. The Stark shifting of the HR centers under the application of an
external electrical field was observed in a CVD diamond film equipped with
buried graphitic electrodes, suggesting a lack of inversion symmetry in the
defects' structure. Furthermore, the photoluminescence mapping under 405 nm
excitation of a "detector grade" diamond sample implanted at a 1x1010 cm-2 He+
ion fluence enabled to identify the spectral features of both the HR emission
lines from the same localized optical spots. The reported results provide a
first insight towards the understanding of the structure of He-related defects
in diamond and their possible utilization in practical applicationsComment: 9 pages, 3 figure
- …