1,560 research outputs found
Performance of the Now Malaria rapid diagnostic test with returned travellers: a 2-year retrospective study in a French teaching hospital
ABSTRACTMalaria caused by Plasmodium falciparum remains the major life-threatening parasitic infection in the world. The number of cases in non-endemic countries continues to increase, and it is important that misdiagnosis of malaria should not occur, especially in non-immune travellers, because of the high risk of a fatal outcome. In a retrospective study of 399 sera, the Now Malaria rapid test was compared with the quantitative buffy coat (QBC) test and microbiological examination of thin blood films. Compared with the QBC test and thin blood films, the Now Malaria test had sensitivity and specificity values of 96.4% and 97%, respectively, for the detection of pure P. falciparum infection. A negative predictive value of 99.4% allows this test to be included in diagnostic strategies for patients presenting with clinical suspicion of malaria. Two false-negative results were associated with low levels of parasitaemia in the specimens. Thus, use of the Now Malaria test alone to detect P. falciparum infection in non-endemic countries could lead to misdiagnosis of malaria. This rapid diagnostic test should therefore be performed in association with another prompt traditional method such as examination of thin blood films
Freezing of dynamical exponents in low dimensional random media
A particle in a random potential with logarithmic correlations in dimensions
is shown to undergo a dynamical transition at . In
exact results demonstrate that , the static glass transition
temperature, and that the dynamical exponent changes from at high temperature to in the glass phase. The same
formulae are argued to hold in . Dynamical freezing is also predicted in
the 2D random gauge XY model and related systems. In a mapping between
dynamics and statics is unveiled and freezing involves barriers as well as
valleys. Anomalous scaling occurs in the creep dynamics.Comment: 5 pages, 2 figures, RevTe
Remanence effects in the electrical resistivity of spin glasses
We have measured the low temperature electrical resistivity of Ag : Mn
mesoscopic spin glasses prepared by ion implantation with a concentration of
700 ppm. As expected, we observe a clear maximum in the resistivity (T ) at a
temperature in good agreement with theoretical predictions. Moreover, we
observe remanence effects at very weak magnetic fields for the resistivity
below the freezing temperature Tsg: upon Field Cooling (fc), we observe clear
deviations of (T ) as compared with the Zero Field Cooling (zfc); such
deviations appear even for very small magnetic fields, typically in the Gauss
range. This onset of remanence for very weak magnetic fields is reminiscent of
the typical signature on magnetic susceptibility measurements of the spin glass
transition for this generic glassy system
Absence of Two-Dimensional Bragg Glasses
The stability to dislocations of the elastic phase, or ``Bragg glass'', of a
randomly pinned elastic medium in two dimensions is studied using the
minimum-cost-flow algorithm for a disordered fully-packed loop model. The
elastic phase is found to be unstable to dislocations due to the quenched
disorder. The energetics of dislocations are discussed within the framework of
renormalization group predictions as well as in terms of a domain wall picture.Comment: 5 pages, REVTEX, 3 figures included. Further information can be
obtained from [email protected]
Superconducting instability in 3 band metallic nanotubes
Motivated by recent experiments on small radius nanotubes, we study the
superconducting instabilities of cylindrical (5,0) nanotubes. According to band
structure calculations, thesenanotubes possess three bands at the Fermi energy.
Using a fermionic renormalization group approach and a careful bosonization
treatment,we consider the effect of different attractive interactions, mediated
by phonons, within the Luttinger Liquid framework. We particularly focus on a
superconducting instability specific to the three bands model we consider for
the description of these
(5,0) cylindrical nanotubes.Comment: RevTeX 4, 17 pages, 10 EPS figure
Freezing transitions and the density of states of 2D random Dirac Hamiltonians
Using an exact mapping to disordered Coulomb gases, we introduce a novel
method to study two dimensional Dirac fermions with quenched disorder in two
dimensions which allows to treat non perturbative freezing phenomena. For
purely random gauge disorder it is known that the exact zero energy eigenstate
exhibits a freezing-like transition at a threshold value of disorder
. Here we compute the dynamical exponent which
characterizes the critical behaviour of the density of states around zero
energy, and find that it also exhibits a phase transition. Specifically, we
find that (and ) with for and
for . For a finite system size we find large
sample to sample fluctuations with a typical .
Adding a scalar random potential of small variance , as in the
corresponding quantum Hall system, yields a finite noncritical whose scaling exponent exhibits two transitions, one
at and the other at . These transitions are shown
to be related to the one of a directed polymer on a Cayley tree with random
signs (or complex) Boltzmann weights. Some observations are made for the strong
disorder regime relevant to describe transport in the quantum Hall system
- …