218 research outputs found

    New dry friction model with load- and velocity- dependence and dynamic identification of multi-dof robots

    Get PDF
    International audience— Usually, the joint transmission friction model for robots is composed of a viscous friction force and of a constant dry sliding friction force. However, according to the Coulomb law, the dry friction force depends linearly on the load driven by the transmission, which has to be taken into account for robots working with large variation of the payload or inertial and gravity forces. Moreover, for robots actuating at low velocity, the Stribeck effect must be taken into account. This paper proposes a new inverse dynamic identification model for n degrees of freedom (dof) serial robot, where the dry sliding friction force is a linear function of both the dynamic and the external forces, with a velocity-dependent coefficient. A new sequential identification procedure is carried out. At a first step, the friction model parameters are identified for each joint (1 dof), moving one joint at a time (this step has been validated in [23]). At a second step, these values are fixed in the n dof dynamic model for the identification of all robot inertial and gravity parameters. For the two steps, the identification concatenates all the joint data collected while the robot is tracking planned trajectories with different payloads to get a global least squares estimation of inertial and new friction parameters. An experimental validation is carried out with an industrial 3 dof robot

    Identification dynamique de robots avec un modèle de frottement sec fonction de la charge et de la vitesse

    Get PDF
    International audienceEn robotique, les pertes dans la chaine d'actionnement articulaire des robots sont généralement prises en compte dans le modèle dynamique par un effort de frottement visqueux proportionnel à la vitesse et par un effort constant de frottement sec. Pourtant, d'après la loi de Coulomb, le frottement sec de glissement varie avec les efforts de contact dans les éléments de transmission. Ainsi, cet effet est à prendre en compte pour les systèmes mécaniques soumis à de fortes variations de charge. Cet article présente un nouveau modèle dynamique dans lequel l'effort de frottement sec est proportionnel à la charge selon un coefficient dépendant de la vitesse. Une nouvelle procédure permet d'identifier ce modèle à partir de mesures faites sur le robot réalisant diverses trajectoires avec différents cas de charge. Une validation expérimentale est réalisée sur un robot industriel

    Identification dynamique de robots avec un modèle de frottement sec fonction de la charge et de la vitesse

    Get PDF
    International audienceEn robotique, les pertes dans la chaine d'actionnement articulaire des robots sont généralement prises en compte dans le modèle dynamique par un effort de frottement visqueux proportionnel à la vitesse et par un effort constant de frottement sec. Pourtant, d'après la loi de Coulomb, le frottement sec de glissement varie avec les efforts de contact dans les éléments de transmission. Ainsi, cet effet est à prendre en compte pour les systèmes mécaniques soumis à de fortes variations de charge. Cet article présente un nouveau modèle dynamique dans lequel l'effort de frottement sec est proportionnel à la charge selon un coefficient dépendant de la vitesse. Une nouvelle procédure permet d'identifier ce modèle à partir de mesures faites sur le robot réalisant diverses trajectoires avec différents cas de charge. Une validation expérimentale est réalisée sur un robot industriel

    Evaluation of an MPN test for the rapid enumeration of Pseudomonas aeruginosa in hospital waters.

    Get PDF
    In this study, the performance of a new most probable number (MPN) test (Pseudalert®/Quanti-Tray®) for the enumeration of Pseudomonas aeruginosa from hospital waters was compared with both international and national membrane filtration-based culture methods for P. aeruginosa: ISO 16266:2006 and UK The Microbiology of Drinking Water – Part 8 (MoDW Part 8), which both use Pseudomonas CN agar. The comparison based on the calculation of mean relative differences between the two methods was conducted according to ISO 17994:2014. Using both routine hospital water samples (80 from six laboratories) and artificially contaminated samples (192 from five laboratories), paired counts from each sample and the enumeration method were analysed. For routine samples, there were insufficient data for a conclusive assessment, but the data do indicate at least equivalent performance of Pseudalert®/Quanti-Tray®. For the artificially contaminated samples, the data revealed higher counts of P. aeruginosa being recorded by Pseudalert®/Quanti-Tray®. The Pseudalert®/Quanti-Tray® method does not require confirmation testing for atypical strains of P. aeruginosa, saving up to 6 days of additional analysis, and has the added advantage of providing confirmed counts within 24–28 hours incubation compared to 40–48 hours or longer for the ISO 16266 and MoDW Part 8 methods

    Design and acceptability assessment of a new reversible orthosis

    Get PDF
    We present a new device aimed at being used for upper limb rehabilitation. Our main focus was to design a robot capable of working in both the passive mode (i.e. the robot shall be strong enough to generate human-like movements while guiding the weak arm of a patient) and the active mode (i.e. the robot shall be able of following the arm without disturbing human natural motion). This greatly challenges the design, since the system shall be reversible and lightweight while providing human compatible strength, workspace and speed. The solution takes the form of an orthotic structure, which allows control of human arm redundancy contrarily to clinically available upper limb rehabilitation robots. It is equipped with an innovative transmission technology, which provides both high gear ratio and fine reversibility. In order to evaluate the device and its therapeutic efficacy, we compared several series of pointing movements in healthy subjects wearing and not wearing the orthotic device . In this way, we could assess any disturbing effect on normal movements. Results show that the main movement characteristics (direction, duration, bell shape profile) are preserved. ©2008 IEEE

    Fluid gels: a new feedstock for high viscosity jetting

    Get PDF
    Suspensions of gel particles which are pourable or spoonable at room temperature can be created by shearing a gelling biopolymer through its gelation (thermal or ion mediated) rather than allowing quiescent cooling – thus the term ‘fluid gel’ may be used to describe the resulting material. As agar gelation is thermoreversible this type of fluid gel is able to be heated again to melt agar gel particles to varying degrees then re-form a network quiescently upon cooling, whose strength depends on the temperature of re-heating, determining the amount of agar solubilised and subsequently able to partake in re-gelation. Using this principle, for the first time fluid gels have been applied to a high viscosity 3D printing process wherein the printing temperature (at the nozzle) is controllable. This allows the use of ambient temperature feedstocks and by altering the nozzle temperature, the internal nature (presence or absence of gel particles) and gel strength of printed droplets differs. If the nozzle prints at different temperatures for each layer a structure with modulated texture could be created

    Including Pathogen Risk in Life Cycle Assessment of Wastewater Management. 1. Estimating the Burden of Disease Associated with Pathogens

    Get PDF
    The environmental performance of wastewater and sewage sludge management is commonly assessed using life cycle assessment (LCA), whereas pathogen risk is evaluated with quantitative microbial risk assessment (QMRA). This study explored the application of QMRA methodology with intent to include pathogen risk in LCA and facilitate a comparison with other potential impacts on human health considered in LCA. Pathogen risk was estimated for a model wastewater treatment system (WWTS) located in an industrialized country and consisting of primary, secondary, and tertiary wastewater treatment, anaerobic sludge digestion, and land application of sewage sludge. The estimation was based on eight previous QMRA studies as well as parameter values taken from the literature. A total pathogen risk (expressed as burden of disease) on the order of 0.2–9 disability-adjusted life years (DALY) per year of operation was estimated for the model WWTS serving 28 600 persons and for the pathogens and exposure pathways included in this study. The comparison of pathogen risk with other potential impacts on human health considered in LCA is detailed in part 2 of this article series

    Global Peak in Atmospheric Radiocarbon Provides a Potential Definition for the Onset of the Anthropocene Epoch in 1965

    Get PDF
    Anthropogenic activity is now recognised as having profoundly and permanently altered the Earth system, suggesting we have entered a human-dominated geological epoch, the ‘Anthropocene’. To formally define the onset of the Anthropocene, a synchronous global signature within geological-forming materials is required. Here we report a series of precisely-dated tree-ring records from Campbell Island (Southern Ocean) that capture peak atmospheric radiocarbon (14C) resulting from Northern Hemisphere-dominated thermonuclear bomb tests during the 1950s and 1960s. The only alien tree on the island, a Sitka spruce (Picea sitchensis), allows us to seasonally-resolve Southern Hemisphere atmospheric 14C, demonstrating the ‘bomb peak’ in this remote and pristine location occurred in the last-quarter of 1965 (October-December), coincident with the broader changes associated with the post-World War II ‘Great Acceleration’ in industrial capacity and consumption. Our findings provide a precisely-resolved potential Global Stratotype Section and Point (GSSP) or ‘golden spike’, marking the onset of the Anthropocene Epoch
    • …
    corecore