50 research outputs found

    A European Multicentric Investigation of Atypical Melanocytic Skin Lesions of Palms and Soles: The iDScore-PalmoPlantar Database

    Get PDF
    : Background: The differential diagnosis of atypical melanocytic palmoplantar skin lesions (aMPLs) represents a diagnostic challenge, including atypical nevi (AN) and early melanomas (MMs) that display overlapping clinical and dermoscopic features. We aimed to set up a multicentric dataset of aMPL dermoscopic cases paired with multiple anamnestic risk factors and demographic and morphologic data. Methods: Each aMPL case was paired with a dermoscopic and clinical picture and a series of lesion-related data (maximum diameter value; location on the palm/sole in 17 areas; histologic diagnosis; and patient-related data (age, sex, family history of melanoma/sunburns, phototype, pheomelanin, eye/hair color, multiple/dysplastic body nevi, and traumatism on palms/soles). Results: A total of 542 aMPL cases-113 MM and 429 AN-were collected from 195 males and 347 females. No sex prevalence was found for melanomas, while women were found to have relatively more nevi. Melanomas were prevalent on the heel, plantar arch, and fingers in patients aged 65.3 on average, with an average diameter of 17 mm. Atypical nevi were prevalent on the plantar arch and palmar area of patients aged 41.33 on average, with an average diameter of 7 mm. Conclusions: Keeping in mind the risk profile of an aMPL patient can help obtain a timely differentiation between malignant/benign cases, thus avoiding delayed and inappropriate excision, respectively, with the latter often causing discomfort/dysfunctional scarring, especially at acral sites

    Pattern Analysis of Benign and Malignant Atypical Melanocytic Skin Lesions of Palms and Soles: Variations of Dermoscopic Features According to Anatomic Site and Personal Experience

    Get PDF
    Background: The differential diagnosis of atypical melanocytic skin lesions localized on palms and soles represents a diagnostic challenge: indeed, this spectrum encompasses atypical nevi (AN) and early-stage melanomas (EN) displaying overlapping clinical and dermoscopic features. This often generates unnecessary excisions or delayed diagnosis. Investigations to date were mostly carried out in specific populations, focusing either on acrolentiginous melanomas or morphologically typical acquired nevi. Aims: To investigate the dermoscopic features of atypical melanocytic palmoplantar skin lesions (aMPPLs) as evaluated by variously skilled dermatologists and assess their concordance; to investigate the variations in dermoscopic appearance according to precise location on palms and soles; to detect the features with the strongest association with malignancy/benignity in each specific site. Methods: A dataset of 471 aMPPLs—excised in the suspect of malignancy—was collected from 10 European Centers, including a standardized dermoscopic picture (17Ă—) and lesion/patient metadata. An anatomical classification into 17 subareas was considered, along with an anatomo-functional classification considering pressure/friction, (4 macroareas). A total of 156 participants (95 with less than 5 years of experience in dermoscopy and 61 with ≥than 5 years) from 17 countries performed a blinded tele-dermoscopic pattern analysis over 20 cases through a specifically realized web platform. Results: A total of 37,440 dermoscopic evaluations were obtained over 94 (20%) EM and 377 (80%) AN. The areas with the highest density of EM compared to AN were the heel (40.3% EM/aMPPLs) of the sole and the “fingers area” (33%EM/aMPPLs) of the palm, both characterized by intense/chronic traumatism/friction. Globally, the recognition rates of 12 dermoscopic patterns were non statistically different between 95 dermatology residents and 61 specialists: aMPPLs in the plantar arch appeared to be the most “difficult” to diagnose, the parallel ridge pattern was poorly recognized and irregular/regular fibrillar patterns often misinterpreted. Regarding the aMPPL of the “heel area”, the parallel furrow pattern (p = 0.014) and lattice-like pattern (p = 0.001) significantly discriminated benign cases, while asymmetry of colors (p = 0.002) and regression structures (p = 0.025) malignant ones. In aMPPLs of the “plantar arch”, the lattice-like pattern (p = 0.012) was significant for benignity and asymmetry of structures, asymmetry of colors, regression structures, or blue-white veil for malignancy. In palmar lesions, no data were significant in the discrimination between malignant and benign aMPPLs. Conclusions: This study highlights that (i) the pattern analysis of aMPPLs is challenging for both experienced and novice dermoscopists; (ii) the histological distribution varies according to the anatomo-functional classification; and (iii) different dermoscopic patterns are able to discriminate malignant from benign aMPPLs within specific plantar and palmar areas

    Factors Affecting Sentinel Node Metastasis in Thin (T1) Cutaneous Melanomas: Development and External Validation of a Predictive Nomogram

    Get PDF
    PURPOSE Thin melanomas (T1; ≤ 1 mm) constitute 70% of newly diagnosed cutaneous melanomas. Regional node metastasis determined by sentinel node biopsy (SNB) is an important prognostic factor for T1 melanoma. However, current melanoma guidelines do not provide clear indications on when to perform SNB in T1 disease and stress an individualized approach to SNB that considers all clinicopathologic risk factors. We aimed to identify determinants of sentinel node (SN) status for incorporation into an externally validated nomogram to better select patients with T1 disease for SNB. PATIENTS AND METHODS The development cohort comprised 3,666 patients with T1 disease consecutively treated at the Istituto Nazionale Tumori (Milan, Italy) between 2001 and 2018; 4,227 patients with T1 disease treated at 13 other European centers over the same period formed the validation cohort. A random forest procedure was applied to the development data set to select characteristics associated with SN status for inclusion in a multiple binary logistic model from which a nomogram was elaborated. Decision curve analyses assessed the clinical utility of the nomogram. RESULTS Of patients in the development cohort, 1,635 underwent SNB; 108 patients (6.6%) were SN positive. By univariable analysis, age, growth phase, Breslow thickness, ulceration, mitotic rate, regression, and lymphovascular invasion were significantly associated with SN status. The random forest procedure selected 6 variables (not growth phase) for inclusion in the logistic model and nomogram. The nomogram proved well calibrated and had good discriminative ability in both cohorts. Decision curve analyses revealed the superior net benefit of the nomogram compared with each individual variable included in it as well as with variables suggested by current guidelines. CONCLUSION We propose the nomogram as a decision aid in all patients with T1 melanoma being considered for SNB
    corecore