20 research outputs found
Cardinality of retracts of monounary algebras
summary:For an uncountable monounary algebra with cardinality it is proved that has exactly retracts. The case when is countable is also dealt with
Interpretation of Fuzzy Attribute Subsets in Generalized One-Sided Concept Lattices
In this paper we describe possible interpretation and reduction of fuzzy attributes in Generalized One-sided Concept Lattices (GOSCL). This type of concept lattices represent generalization of Formal Concept Analysis (FCA) suitable for analysis of datatables with different types of attributes. FCA as well as generalized one-sided concept lattices represent conceptual data miningmethods. With growing number of attributes the interpretation of fuzzy subsets may become unclear, hence another interpretation of this fuzzy attribute subsets can be valuable. The originality of the presented method is based on the usage of one-sided concept lattices derived from submodels of former object-attribute model by grouping attributes with the same truth value structure. This leads to new method for attribute reduction in GOSCL environment
Distributed Computation of Generalized One-Sided Concept Lattices on Sparse Data Tables
In this paper we present the study on the usage of distributed version of the algorithm for generalized one-sided concept lattices (GOSCL), which provides a special case for fuzzy version of data analysis approach called formal concept analysis (FCA). The methods of this type create the conceptual model of the input data based on the theory of concept lattices and were successfully applied in several domains. GOSCL is able to create one-sided concept lattices for data tables with different attribute types processed as fuzzy sets. One of the problems with the creation of FCA-based models is their computational complexity. In order to reduce the computation times, we have designed the distributed version of the algorithm for GOSCL. The algorithm is able to work well especially for data where the number of newly generated concepts is reduced, i.e., for sparse input data tables which are often used in domains like text-mining and information retrieval. Therefore, we present the experimental results on sparse data tables in order to show the applicability of the algorithm on the generated data and the selected text-mining datasets