8,278 research outputs found

    Performance analysis of time slicing in DVB-H

    Get PDF
    TV is the biggest media and the last one missing from mobile phones. Digital Video Broadcasting for Handhelds (DVB-H) is the latest development from the DVB Project targeting handheld, battery powered devices such as mobile telephones, PDAs(Personal Digital Assistants), etc. Time Division Multiplexing (TDM) is the technology that is usually used in computer and telecommunication systems. Time slicing is one of the characteristics that makes it possible to broadcast high resolution TV programes and fast IP data services to battery powered handheld terminals. This paper discusses the characteristics and advantages of Time slicing algorithm in DVB-H and presents the performance analysis of time slicing in DVB-H through both theoretical analysis and software simulation

    Management of Digital Video Broadcasting Services in Open Delivery Platforms

    Get PDF
    The future of Digital Video Broadcasting (DVB) is moving towards solutions offering an efficient way of carrying interactive IP multimedia services over digital terrestrial broadcasting networks to handheld terminals. One of the most promising technologies is Digital Video Broadcasting-Handheld (DVB-H), at present under standardisation. Services deployed via this type of DVB technologies should enjoy reliability comparable to TV services and high quality standards. However, the market at present does not provide effective and economical solutions for the deployment of such services over multi-domain IP networks, due to their high level of unreliability. This paper focuses on service management, service level agreement (SLA) and network performance requirements of DVB-H services. Experimental results are presented concerning QoS sensitivity to network performance of DVB-H services delivered over a multi-domain IP network. Moreover, a solution for efficient and cost effective service management via QoS monitoring and control and network SLA design is proposed. The solution gives DVB-H operators the possibility of fully managing service QoS without being tied to third party operators

    A Multi-signal Variant for the GPU-based Parallelization of Growing Self-Organizing Networks

    Full text link
    Among the many possible approaches for the parallelization of self-organizing networks, and in particular of growing self-organizing networks, perhaps the most common one is producing an optimized, parallel implementation of the standard sequential algorithms reported in the literature. In this paper we explore an alternative approach, based on a new algorithm variant specifically designed to match the features of the large-scale, fine-grained parallelism of GPUs, in which multiple input signals are processed at once. Comparative tests have been performed, using both parallel and sequential implementations of the new algorithm variant, in particular for a growing self-organizing network that reconstructs surfaces from point clouds. The experimental results show that this approach allows harnessing in a more effective way the intrinsic parallelism that the self-organizing networks algorithms seem intuitively to suggest, obtaining better performances even with networks of smaller size.Comment: 17 page

    Stochastic user behaviour modelling and network simulation for resource management in cooperation with mobile telecommunications and broadcast networks

    Get PDF
    The latest generations of telecommunications networks have been designed to deliver higher data rates than widely used second generation telecommunications networks, providing flexible communication capabilities that can deliver high quality video images. However, these new generations of telecommunications networks are interference limited, impairing their performance in cases of heavy traffic and high usage. This limits the services offered by a telecommunications network operator to those that the operator is confident their network can meet the demand for. One way to lift this constraint would be for the mobile telecommunications network operator to obtain the cooperation of a broadcast network operator so that during periods when the demand for the service is too high for the telecommunications network to meet, the service can be transferred to the broadcast network. In the United Kingdom the most recent telecommunications networks on the market are third generation UMTS networks while the terrestrial digital broadcast networks are DVB-T networks. This paper proposes a way for UMTS network operators to forecast the traffic associated with high demand services intended to be deployed on the UMTS network and when demand requires to transfer it to a cooperating DVB-T network. The paper aims to justify to UMTS network operators the use of a DVB-T network as a support for a UMTS network by clearly showing how using a DVB-T network to support it can increase the revenue generated by their network
    • …
    corecore