58 research outputs found

    Theoretical calculations and analysis for n + 6

    Full text link
    R-matrix theory is an important methodology for applications on light, medium and heavy mass nuclides nuclear reaction in the resonance energy range. Full R-matrix formalism contains the diagonal elements of the energy levels matrix and it is a rigorous theory. Because of different assumptions and approximations, many kinds of R-matrix derived methods are obtained. The new R-matrix code FDRR is presented and includes 4 kinds of R-matrix applications. It can be used for calculating integral cross sections and angular distributions of 2-bodies reactions. The cross sections and angular distributions of n+ 6Li reaction are calculated and analyzed by FDRR code. The results are in good agreement with experimental data below 20 MeV

    Updated Nucleosynthesis Constraints on Unstable Relic Particles

    Get PDF
    We revisit the upper limits on the abundance of unstable massive relic particles provided by the success of Big-Bang Nucleosynthesis calculations. We use the cosmic microwave background data to constrain the baryon-to-photon ratio, and incorporate an extensively updated compilation of cross sections into a new calculation of the network of reactions induced by electromagnetic showers that create and destroy the light elements deuterium, he3, he4, li6 and li7. We derive analytic approximations that complement and check the full numerical calculations. Considerations of the abundances of he4 and li6 exclude exceptional regions of parameter space that would otherwise have been permitted by deuterium alone. We illustrate our results by applying them to massive gravitinos. If they weigh ~100 GeV, their primordial abundance should have been below about 10^{-13} of the total entropy. This would imply an upper limit on the reheating temperature of a few times 10^7 GeV, which could be a potential difficulty for some models of inflation. We discuss possible ways of evading this problem.Comment: 40 pages LaTeX, 18 eps figure
    corecore