2,164 research outputs found

    A self-reconstructed bifunctional electrocatalyst of pseudo-amorphous nickel carbide @ iron oxide network for seawater splitting.

    Get PDF
    Here, a sol-gel method is used to prepare a Prussian blue analogue (NiFe-PBA) precursor with a 2D network, which is further annealed to an Fe3 O4 /NiCx composite (NiFe-PBA-gel-cal), inheriting the ultrahigh specific surface area of the parent structure. When the composite is used as both anode and cathode catalyst for overall water splitting, it requires low voltages of 1.57 and 1.66 V to provide a current density of 100 mA cm-2 in alkaline freshwater and simulated seawater, respectively, exhibiting no obvious attenuation over a 50 h test. Operando Raman spectroscopy and X-ray photoelectron spectroscopy indicate that NiOOH2-x active species containing high-valence Ni3+ /Ni4+ are in situ generated from NiCx during the water oxidation. Density functional theory calculations combined with ligand field theory reveal that the role of high valence states of Ni is to trigger the production of localized O 2p electron holes, acting as electrophilic centers for the activation of redox reactions for oxygen evolution reaction. After hydrogen evolution reaction, a series of ex situ and in situ investigations indicate the reduction from Fe3+ to Fe2+ and the evolution of Ni(OH)2 are the origin of the high activity

    Heterostructured core-Shell Ni-Co@Fe-Co nanoboxes of prussian blue analogues for efficient electrocatalytic hydrogen evolution from alkaline seawater.

    Get PDF
    The rational construction of efficient and low-cost electrocatalysts for the hydrogen evolution reaction (HER) is critical to seawater electrolysis. Herein, trimetallic heterostructured core-shell nanoboxes based on Prussian blue analogues (Ni-Co@Fe-Co PBA) were synthesized using an iterative coprecipitation strategy. The same coprecipitation procedure was used for the preparation of the PBA core and shell, with the synthesis of the shell involving chemical etching during the introduction of ferrous ions. Due to its unique structure and composition, the optimized trimetallic Ni-Co@Fe-Co PBA possesses more active interfacial sites and a high specific surface area. As a result, the developed Ni-Co@Fe-Co PBA electrocatalyst exhibits remarkable electrocatalytic HER performance with small overpotentials of 43 and 183 mV to drive a current density of 10 mA cm-2 in alkaline freshwater and simulated seawater, respectively. Operando Raman spectroscopy demonstrates the evolution of Co2+ from Co3+ in the catalyst during HER. Density functional theory simulations reveal that the H*-N adsorption sites lower the barrier energy of the rate-limiting step, and the introduced Fe species improve the electron mobility of Ni-Co@Fe-Co PBA. The charge transfer at the core-shell interface leads to the generation of H* intermediates, thereby enhancing the HER activity. By pairing this HER catalyst (Ni-Co@Fe-Co PBA) with another core-shell PBA OER catalyst (NiCo@A-NiCo-PBA-AA) reported by our group, the fabricated two-electrode electrolyzer was found to achieve high output current densities of 44 and 30 mA cm-2 at a low voltage of 1.6 V in alkaline freshwater and simulated seawater, respectively, exhibiting remarkable durability over a 100 h test

    Using metal cation to control the microstructure of cobalt oxide in energy conversion and storage applications

    Get PDF
    Herein, a facile and efficient synthesis of microstructured Co3O4 for both supercapacitor and water-splitting applications is reported. Metal cations (Fe3+, Cu2+) serve as structure-directing agents regulating the structure of Co compounds, which are subsequently annealed to yield Co3O4. Detailed characterizations and density functional theory (DFT) calculations reveal that the in situ Cl-doping introduces oxygen defects and provides abundant electroactive sites, and narrows the bandgap, which enhances the electron excitation of the as-formed Co3O4. The as-prepared Cl-doped Co3O4 hierarchical nanospheres (Cl-Co3O4-h) display a high specific capacitance of 1629 F g−1 at 1 A g−1 as an electrode for supercapacitors, with excellent rate capability and cyclability. The Cl-Co3O4-h//activated carbon (AC) asymmetric supercapacitor (ASC) electrode achieves a specific capacitance of 237 F g−1 at 1 A g−1, with an energy density of 74 Wh kg−1 at a power density of 807 W kg−1 and even maintains 47 Wh kg−1 at the higher-power density of 24.2 kW kg−1. An integrated electrolyzer for water-splitting with Cl-Co3O4-h as both cathode and anode can be driven by Cl-Co3O4-h//AC ASC. The electrolyzer provides a high current density of 35 mA cm–2 at a cell voltage of 1.6 V, with good current density retention over 50 h

    Development and preliminary evaluation of EMPOWER for surrogate decision-makers of critically ill patients

    Get PDF
    OBJECTIVE: The objectives of this study were to develop and refine EMPOWER (Enhancing and Mobilizing the POtential for Wellness and Resilience), a brief manualized cognitive-behavioral, acceptance-based intervention for surrogate decision-makers of critically ill patients and to evaluate its preliminary feasibility, acceptability, and promise in improving surrogates' mental health and patient outcomes. METHOD: Part 1 involved obtaining qualitative stakeholder feedback from 5 bereaved surrogates and 10 critical care and mental health clinicians. Stakeholders were provided with the manual and prompted for feedback on its content, format, and language. Feedback was organized and incorporated into the manual, which was then re-circulated until consensus. In Part 2, surrogates of critically ill patients admitted to an intensive care unit (ICU) reporting moderate anxiety or close attachment were enrolled in an open trial of EMPOWER. Surrogates completed six, 15-20 min modules, totaling 1.5-2 h. Surrogates were administered measures of peritraumatic distress, experiential avoidance, prolonged grief, distress tolerance, anxiety, and depression at pre-intervention, post-intervention, and at 1-month and 3-month follow-up assessments. RESULTS: Part 1 resulted in changes to the EMPOWER manual, including reducing jargon, improving navigability, making EMPOWER applicable for a range of illness scenarios, rearranging the modules, and adding further instructions and psychoeducation. Part 2 findings suggested that EMPOWER is feasible, with 100% of participants completing all modules. The acceptability of EMPOWER appeared strong, with high ratings of effectiveness and helpfulness (M = 8/10). Results showed immediate post-intervention improvements in anxiety (d = -0.41), peritraumatic distress (d = -0.24), and experiential avoidance (d = -0.23). At the 3-month follow-up assessments, surrogates exhibited improvements in prolonged grief symptoms (d = -0.94), depression (d = -0.23), anxiety (d = -0.29), and experiential avoidance (d = -0.30). SIGNIFICANCE OF RESULTS: Preliminary data suggest that EMPOWER is feasible, acceptable, and associated with notable improvements in psychological symptoms among surrogates. Future research should examine EMPOWER with a larger sample in a randomized controlled trial

    Enhancing the performance of Bi2S3 in electrocatalytic and supercapacitor applications by controlling lattice strain

    Get PDF
    Lattice-strained Bi2S3 with 3D hierarchical structures are prepared through a top-down route by a topotactic transformation. High-resolution transmission electron microscopy and X-ray diffraction (XRD) confirm the lattice spacing is expanded by prolonged sulfuration. Performance studies demonstrate that Bi2S3 with the largest lattice expansion (Bi2S3-9.7%, where 9.7% represents the lattice expansion) exhibits a greater electrocatalytic hydrogen evolution reaction (HER) activity compared to Bi2S3 and Bi2S3-3.2%. Density functional theory calculations reveal the expansion of the lattice spacing reduces the bandwidth and upshifts the band center of the Bi 3d orbits, facilitating electron exchange with the S 2p orbits. The resultant intrinsic electronic configuration exhibits favorable H* adsorption kinetics and a reduced energy barrier for water dissociation in hydrogen evolution. Operando Raman and post-mortem characterizations using XRD and X-ray photoelectron spectroscopy reveal the generation of pseudo-amorphous Bi at the edge of Bi2S3 nanorods of the sample with lattice strain during HER, yielding Bi2S3-9.7%-A. It is worth noting when Bi2S3-9.7%-A is assembled as a positive electrode in an asymmetric supercapacitor, its performance is greatly superior to that of the same device formed using pristine Bi2S3-9.7%. The as-prepared Bi2S3-9.7%-A//activated carbon asymmetric supercapacitor achieves a high specific capacitance of 307.4 F g−1 at 1 A g−1, exhibiting high retention of 84.1% after 10 000 cycles

    Conductance Ratios and Cellular Identity

    Get PDF
    Recent experimental evidence suggests that coordinated expression of ion channels plays a role in constraining neuronal electrical activity. In particular, each neuronal cell type of the crustacean stomatogastric ganglion exhibits a unique set of positive linear correlations between ionic membrane conductances. These data suggest a causal relationship between expressed conductance correlations and features of cellular identity, namely electrical activity type. To test this idea, we used an existing database of conductance-based model neurons. We partitioned this database based on various measures of intrinsic activity, to approximate distinctions between biological cell types. We then tested individual conductance pairs for linear dependence to identify correlations. Contrary to experimental evidence, in which all conductance correlations are positive, 32% of correlations seen in this database were negative relationships. In addition, 80% of correlations seen here involved at least one calcium conductance, which have been difficult to measure experimentally. Similar to experimental results, each activity type investigated had a unique combination of correlated conductances. Finally, we found that populations of models that conform to a specific conductance correlation have a higher likelihood of exhibiting a particular feature of electrical activity. We conclude that regulating conductance ratios can support proper electrical activity of a wide range of cell types, particularly when the identity of the cell is well-defined by one or two features of its activity. Furthermore, we predict that previously unseen negative correlations and correlations involving calcium conductances are biologically plausible

    Association of anthropometric measures across the life-course with refractive error and ocular biometry at age 15 years

    Get PDF
    YesBackground A recent Genome-wide association meta-analysis (GWAS) of refractive error reported shared genetics with anthropometric traits such as height, BMI and obesity. To explore a potential relationship with refractive error and ocular structure we performed a life-course analysis including both maternal and child characteristics using data from the Avon Longitudinal Study of Parents and Children cohort. Methods Measures collected across the life-course were analysed to explore the association of height, weight, and BMI with refractive error and ocular biometric measures at age 15 years from 1613children. The outcome measures were the mean spherical equivalent (MSE) of refractive error (dioptres), axial length (AXL; mm), and radius of corneal curvature (RCC; mm). Potential confounding variables; maternal age at conception, maternal education level, parental socio-economic status, gestational age, breast-feeding, and gender were adjusted for within each multi-variable model. Results Maternal height was positively associated with teenage AXL (0.010 mm; 95% CI: 0.003, 0.017) and RCC (0.005 mm; 95% CI: 0.003, 0.007), increased maternal weight was positively associated with AXL (0.004 mm; 95% CI: 0.0001, 0.008). Birth length was associated with an increase in teenage AXL (0.067 mm; 95% CI: 0.032, 0.10) and flatter RCC (0.023 mm; 95% CI: 0.013, 0.034) and increasing birth weight was associated with flatter RCC (0.005 mm; 95% CI: 0.0003, 0.009). An increase in teenage height was associated with a lower MSE (− 0.007 D; 95% CI: − 0.013, − 0.001), an increase in AXL (0.021 mm; 95% CI: 0.015, 0.028) and flatter RCC (0.008 mm; 95% CI: 0.006, 0.010). Weight at 15 years was associated with an increase in AXL (0.005 mm; 95% CI: 0.001, 0.009). Conclusions At each life stage (pre-natal, birth, and teenage) height and weight, but not BMI, demonstrate an association with AXL and RCC measured at age 15 years. However, the negative association between refractive error and an increase in height was only present at the teenage life stage. Further research into the growth pattern of ocular structures and the development of refractive error over the life-course is required, particularly at the time of puberty

    Microguards and micromessengers of the genome

    Get PDF
    The regulation of gene expression is of fundamental importance to maintain organismal function and integrity and requires a multifaceted and highly ordered sequence of events. The cyclic nature of gene expression is known as ‘transcription dynamics’. Disruption or perturbation of these dynamics can result in significant fitness costs arising from genome instability, accelerated ageing and disease. We review recent research that supports the idea that an important new role for small RNAs, particularly microRNAs (miRNAs), is in protecting the genome against short-term transcriptional fluctuations, in a process we term ‘microguarding’. An additional emerging role for miRNAs is as ‘micromessengers’—through alteration of gene expression in target cells to which they are trafficked within microvesicles. We describe the scant but emerging evidence that miRNAs can be moved between different cells, individuals and even species, to exert biologically significant responses. With these two new roles, miRNAs have the potential to protect against deleterious gene expression variation from perturbation and to themselves perturb the expression of genes in target cells. These interactions between cells will frequently be subject to conflicts of interest when they occur between unrelated cells that lack a coincidence of fitness interests. Hence, there is the potential for miRNAs to represent both a means to resolve conflicts of interest, as well as instigate them. We conclude by exploring this conflict hypothesis, by describing some of the initial evidence consistent with it and proposing new ideas for future research into this exciting topic
    • …
    corecore