2 research outputs found

    Field screening finger millet germplasm for drought tolerance

    Get PDF
    Drought stress is the most important abiotic constraint limiting finger millet production. Limited research on tolerance to drought in finger millet has been done in Africa. As a result, the only varieties adapted to high-rainfall regions have been developed and promoted. Twenty-four potential drought-tolerant varieties selected from regional trials, and a short-duration commercial check (U15), were screened for drought in three locations in Kenya (KALRO-Kiboko, KALRO-Kampiya Mawe (KYM)) and Tanzania (DRD-Miwaleni). Genotype was significant for all the traits, location for all except yield, and GxL interaction for all except plant height. Sixteen of the varieties outperformed the commercial check (1.10 tha-1), with the best yielders being IE2187 (2.02 tha-1), IEFV0009 (1.50 tha-1), IE501 (1.1.48tha-1), IE593 (1.45 tha-1) and IE2030 (1.43 tha-1). All varieties except one had shorter DAP than the commercial variety. GGE biplot for yield showed Kiboko and Miwaleni locations to be effective in discriminating genotypes. Genotypes IE501, IE593, were specifically adapted to the Kiboko environment while IE546, KNE 741 and IE5791 were more adapted to the Miwaleni environment. Genotypes IE3104, IE5736, IE5733, IE6475 and IEFV0009 were stable across locations. Principal component analysis revealed the first four PC accounted for 85.72% of the variation with plant height, agronomic score, biomass, number of lodged plants, and number of productive tillers contributing the most. Five of the varieties -- IE2187, IEFV0009, IE501, IE593 and IE2030 -- have been advanced to PVS in Kenya and Tanzania, while KNE 741 is at NPT in Kenya

    Participatory Variety Selection for enhanced promotion and adoption of improved finger millet varieties: A case for Singida and Iramba Districts in Central Tanzania

    Get PDF
    Participatory variety selection (PVS) is an approach which provides a wide choice of varieties to farmers to evaluate in their own environment using their own resources for increasing production. It enhances farmer’s access to diverse crop varieties, increases production and ensures food security and helps faster dissemination and adoption of pre and released varieties. It allows varietal selection in targeted areas at cost-effective and timely manner and helps promotion of community seed production and community seed banks. Therefore, a variety developed through PVS usually meets demand of different stakeholders. Farmers in Singida and Iramba districts in central Tanzania were found to be growing land races which were low yielding, long maturing, drought and disease susceptible, as no variety had previously been released in Tanzania. Through PVS a broader choice of varieties that matched farmer needs in adaptation and quality traits was offered for evaluation. As such PVS was used to introduce, evaluate, release and promote for adoption finger millet varieties in Central and Northern Tanzania. Farmers selected and adopted new varieties of a higher utility (a combination of improved agronomic traits, higher yield, and improved quality). Through PVS Tanzania released her first finger millet varieties (U15 and P224). Adoption of the varieties was very high as farmers associated with the varieties; and affordable high quality seed was made available as Quality Declared Seed (QDS) produced by the target farmer groups. Preferred traits differed between the gender groups; women preferred risk averting traits like short duration, drought tolerance, compact heads and disease resistance while male preferred market related traits (high yield, brown colour and big head
    corecore