14,107 research outputs found

    Magnetic properties of PrCu2_2 at high pressure

    Full text link
    We report a study of the low-temperature high-pressure phase diagram of the intermetallic compound PrCu2_2, by means of molecular-field calculations and 63,65^{63,65}Cu nuclear-quadrupole-resonance (NQR) measurements under pressure. The pressure-induced magnetically-ordered phase can be accounted for by considering the influence of the crystal electric field on the 4f4f electron orbitals of the Pr3+^{3+} ions and by introducing a pressure-dependent exchange interaction between the corresponding local magnetic moments. Our experimental data suggest that the order in the induced antiferromagnetic phase is incommensurate. The role of magnetic fluctuations both at high and low pressures is also discussed.Comment: 7 pages, 6 figures, submitted to Eur. Phys. J.

    Elastohydrodynamic study of actin filaments using fluorescence microscopy

    Get PDF
    We probed the bending of actin subject to external forcing and viscous drag. Single actin filaments were moved perpendicular to their long axis in an oscillatory way by means of an optically tweezed latex bead attached to one end of the filaments. Shapes of these polymers were observed by epifluorescence microscopy. They were found to be in agreement with predictions of semiflexible polymer theory and slender-body hydrodynamics. A persistence length of 7.4±0.2μ7.4 \pm 0.2 \mum could be extracted.Comment: RevTex, 4 pages, 5 eps figs, submitted to PR

    Optical evidence for a spin-filter effect in the charge transport of Eu0.6Ca0.4B6Eu_{0.6}Ca_{0.4}B_{6}

    Full text link
    We have measured the optical reflectivity R(ω)R(\omega) of Eu0.6Ca0.4B6Eu_{0.6}Ca_{0.4}B_{6} as a function of temperature between 1.5 and 300 KK and in external magnetic fields up to 7 TT. The slope at the onset of the plasma edge feature in R(ω)R(\omega) increases with decreasing temperature and increasing field but the plasma edge itself does not exhibit the remarkable blue shift that is observed in the binary compound EuB6EuB_{6}. The analysis of the magnetic field dependence of the low temperature optical conductivity spectrum confirms the previously observed exponential decrease of the electrical resistivity upon increasing, field-induced bulk magnetization at constant temperature. In addition, the individual exponential magnetization dependences of the plasma frequency and scattering rate are extracted from the optical data.Comment: submitted to Phys. Rev. Let

    Nonlinear Dynamics of a Bose-Einstein Condensate in a Magnetic Waveguide

    Full text link
    We have studied the internal and external dynamics of a Bose-Einstein condensate in an anharmonic magnetic waveguide. An oscillating condensate experiences a strong coupling between the center of mass motion and the internal collective modes. Due to the anharmonicity of the magnetic potential, not only the center of mass motion shows harmonic frequency generation, but also the internal dynamics exhibit nonlinear frequency mixing. We describe the data with a theoretical model to high accuracy. For strong excitations we test the experimental data for indications of a chaotic behavior.Comment: 4 pages, 4 figure

    Controlling the dynamics of an open many-body quantum system with localized dissipation

    Full text link
    We experimentally investigate the action of a localized dissipative potential on a macroscopic matter wave, which we implement by shining an electron beam on an atomic Bose-Einstein condensate (BEC). We measure the losses induced by the dissipative potential as a function of the dissipation strength observing a paradoxical behavior when the strength of the dissipation exceeds a critical limit: for an increase of the dissipation rate the number of atoms lost from the BEC becomes lower. We repeat the experiment for different parameters of the electron beam and we compare our results with a simple theoretical model, finding excellent agreement. By monitoring the dynamics induced by the dissipative defect we identify the mechanisms which are responsible for the observed paradoxical behavior. We finally demonstrate the link between our dissipative dynamics and the measurement of the density distribution of the BEC allowing for a generalized definition of the Zeno effect. Due to the high degree of control on every parameter, our system is a promising candidate for the engineering of fully governable open quantum systems
    • …
    corecore