390 research outputs found
Finite-time stabilization of homogeneous non-Lipschitz systems
This paper focuses on the problem of finite-time stabilization of homogeneous, non-Lipschitz systems with dilations. A key contribution of this paper is the design of a virtual recursive Holder, non-Lipschitz state feedback, which renders the non-Lipschitz systems in the
special case dominated by a lower-triangular nonlinear system finite-time stable. The proof is based
on a recursive design algorithm developed recently to construct the virtual Holder continuous, finite-time stabilizer as well as a C1 positive definite and proper Lyapunov function that guarantees finite-time stability of the non-Lipschitz nonlinear systems
Toward a robot swarm protecting a group of migrants
Different geopolitical conflicts of recent years have led to mass migration of several civilian populations. These migrations take place in militarized zones, indicating real danger contexts for the populations. Indeed, civilians are increasingly targeted during military assaults. Defense and security needs have increased; therefore, there is a need to prioritize the protection of migrants. Very few or no arrangements are available to manage the scale of displacement and the protection of civilians during migration. In order to increase their security during mass migration in an inhospitable territory, this article proposes an assistive system using a team of mobile robots, labeled a rover swarm that is able to provide safety area around the migrants. We suggest a coordination algorithm including CNN and fuzzy logic that allows the swarm to synchronize their movements and provide better sensor coverage of the environment. Implementation is carried out using on a reduced scale rover to enable evaluation of the functionalities of the suggested software architecture and algorithms. Results bring new perspectives to helping and protecting migrants with a swarm that evolves in a complex and dynamic environment
Analyse, commande et intégration d'un mécanisme parallèle entraîné par des câbles pour la réalisation d'une interface haptique comme métaphore de navigation dans un environnement virtuel
Un domaine de la recherche en ingénierie des systèmes est de développer des systèmes supervisés semi-autonomes qui interagissent à un très haut niveau avec l'humain. Ces systèmes intelligents ont les capacités d'analyser et de traiter certaines informations pour produire un comportement général observable par les capacités sensorielles et temporelles de l'humain. Il est donc nécessaire de définir un environnement créatif qui interface efficacement l'humain aux informations pour rendre de nouvelles expériences multi-sensorielles optimisant et facilitant la prise de décision. En d'autres mots, il est possible de définir un système multi-sensoriel par sa capacité à augmenter l'optimisation de la prise de décision à l'aide d'une interface qui définit un environnement adapté à l'humain. Un système haptique dans un environnement virtuel incluant une collaboration et une interaction entre l'humain, les mécanismes robotisés et la physique de la réalité virtuelle est un exemple. Un système haptique doit gérer un système dynamique non-linéaire sous-contraint et assurer sa stabilité tout en étant transparent à l'humain. La supervision de l'humain permet d'accomplir des tâches précises sans se soucier de la complexité de la dynamique d'interactions alors que le système gère les différents problèmes antagonistes dont de stabilité (délai de la communication en réseau, stabilité des rendus, etc.), de transparence et de performance. Les travaux de recherche proposés présentent un système multi-sensoriel visuo-haptique qui asservisse l'interaction entre l'humain, un mécanisme et la physique de l'environnement virtuel avec une commande bilatérale. Ce système permet à l'humain de réaliser des fonctions ou des missions de haut niveau sans que la complexité de la dynamique d'interaction limite la prise de décision. Plus particulièrement, il sera proposé de réaliser une interface de locomotion pour des missions de réadaptation et d'entraînement. Ce projet, qui est nommé NELI (Network Enabled Locomotion Interface), est divisé en plusieurs sous-systèmes dont le mécanisme entraîné par des câbles nommé CDLI ( Cable Driven Locomotion Interface ), le système asservi avec une commande bilatérale qui assure le rendu de la locomotion, la réalité virtuelle qui inclut la physique de l'environnement, le rendu haptique et le rendu visuel. Dans un premier temps, cette thèse propose une méthode qui assure la qualité de la réponse de la transmission en augmentant la transparence dynamique de l'asservissement articulaire d'une manière automatique. Une approche d'optimisation, basée sur une amélioration des Extremum Seeking Tuning, permet d'ajuster adéquatement les paramètres des régulateurs et définit le critère de l'assurance qualité dans le cas d'une production massive. Cet algorithme est ensuite utilisé, pour étudier le rendu d'impédance avec l'aide de la modélisation d'un câble et de l'enrouleur. Cette modélisation permet de définir un asservissement articulaire hybride qui est utilisé dans la commande hybride cartésienne afin d'assurer le rendu haptique. Dans un troisième temps, dans un contexte de sécurité, la gestion des interférences entre les pièces mécaniques de l'interface de locomotion est décrite avec une méthode d'estimation des collisions des câbles. Une démonstration des interférences entre les câbles de deux plates-formes est simulée démontrant la faisabilité de l'approche. Finalement, la définition d'un moteur physique par un rendu haptique hybride au niveau de la commande cartésienne est présentée en considérant la géométrie des points de contact entre le modèle du pied virtuel et un objet virtuel. Cette approche procure la stabilité d'interaction recherchée lors de la simulation d'un contact infiniment rigide. Un robot marcheur de marque Kondo est embarqué sur l'interface de locomotion pour interagir avec les objets virtuels. Les résultats de la marche du robot dans l'environnement virtuel concrétisent le projet et servent de démonstrateur technologique
Design of a serious game for learning vibrotactile messages
To prevent accidental falls, we have designed an augmented shoe aiming at assisting a user when walking. For this, the risk level (low, medium, high and very high) represented by the current situation is conveyed to the user through vibrotactile messages. In this paper, we describe the design of a serious game dedicated to learning of these signals. The game is centered on a virtual maze, whose parts are associated with the four risk levels. To explore this maze, fitted with a pair of the augmented shoes, the user is invited to walk in a room, completely empty, whose dimensions are mapped to those of the virtual maze. When moving, for each area explored the corresponding signal is delivered to the user through the augmented shoes. An initial experiment confirmed the idea that vibrotactile messages can serve for communicating the level of risk
Use of foot for direct interactions with entities of a virtual environment displayed on a mobile device
With this paper, we report a novel wearable in-terface dedicated to provide new types of 3D interactions with mobile devices. Proposed interface is based on the fact that the foot can be exploited in the interaction with a virtual 3D world. By using several force sensors incorporated in the sole and an accelerometer attached to the shoe; gestures performed with the foot are interpreted in order to let the user interact with a 3D virtual environment. Being located inside a shoe this interface is
fully compatible to constraints related to mobile devices. Indeed as a wearable and transparent device it can be carried everywhere and therefore can be exploited everywhere
Modeling of physical human–robot interaction : admittance controllers applied to intelligent assist devices with large payload
Enhancement of human performance using an intelligent assist device is becoming more common. In order to achieve effective augmentation of human capacity, cooperation between human and robot must be safe and very intuitive. Ensuring such collaboration remains a challenge, especially when admittance control is used. This paper addresses the issues of transparency and human perception coming from vibration in admittance control schemes. Simulation results obtained
with our suggested improved model using an admittance controller are presented, then four models using transfer
functions are discussed in detail and evaluated as a means of simulating physical human–robot interaction using admittance
control. The simulation and experimental results are then compared in order to assess the validity and limitations of the
proposed models in the case of a four-degree-of-freedom intelligent assist device designed for large payload
A serious game for training balance control over different types of soil
It is known that the type of the soil can affect balance. Here we report a serious game designed for training users at maintaining balance over five types of soil (broken stone, stone dust, sand, concrete and wood). By using an augmented shoe and proposed navigation metaphor, in this game, the user is invited to browse a maze while standing balance over the physical grounds. During the exploration, exercises targeting assessment of balance control are suggested. To insure the effectiveness of this training program, four exercises based on the Berg Balance Scale and the Tinetti Balance Assessment Tool are incorporated in the game
Active stability observer using artificial neural network for intuitive physical human–robot interaction
Physical human-robot interaction may present an obstacle to transparency and operations’ intuitiveness. This barrier could occur due to the vibrations caused by a stiff environment interacting with the robotic mechanisms. In this regard, this paper aims to deal with the aforementioned issues while using an observer and an adaptive gain controller. The adaptation of the gain loop should be performed in all circumstances in order to maintain operators’ safety and operations’ intuitiveness. Hence, two approaches for detecting and then reducing vibrations will be introduced in this study as follows: 1) a statistical analysis of a sensor signal (force and velocity) and 2) a multilayer perceptron artificial neural network capable of compensating the first approach for ensuring vibrations identification in real time. Simulations and experimental results are then conducted and compared in order to evaluate the validity of the suggested approaches in minimizing vibrations
Toilet assistive system designed for the reduction of accidental falls in the bathroom using admittance controller
This paper suggests an assistive system for the toilet with the objective of measuring human activities and to provide intelligent mechanical assistance to help seating and standing. The project intends to develop a seating assistance as a technical aid in order to reduce accidents and falls in the bathroom. The preferred technique is human-robot physical interaction algorithms known in collaborative robotics (cobot) and adapting it to a personalized assistance technology installed on a smart toilet. First, the design of the mechanical assistance is presented. Then, an admittance controller is designed and implemented in order to help the user in a similar way as a cobot could be used. This technique could be used to assist the user and improve balance with adequate training and an adequate configuration of the admittance controller
Vibration-induced friction control for walkway locomotion interface
Falls represent a major challenge to mobility for the elderly community, a point that has motivated various studies of balance failures. To support this work, we are interested in mechanisms for the synthesis of ground environments that can be controlled to exhibit dynamic friction characteristics. As a first step, we investigate the design and development of such a variable-friction device, a hybrid locomotion interface using a cable-driven vibrotactile mechanism. Measurements on our prototype, consisting of an aluminum tile covered with low-friction polytetrafluoroethylene (PTFE), demonstrate that it can effectively simulate a low coefficient of static friction. As part of the design, we also investigated the role that induced vibration plays in modifying the coefficient of friction. Measurements of sliding on a PTFE-covered tile in a tilted configuration showed a significant influence of normal low-frequency vibration, particularly for frequencies around 20 Hz, regardless of the user's weight
- …