187 research outputs found

    A new approach for Delta form factors

    Full text link
    We discuss a new approach to reducing excited state contributions from two- and three-point correlation functions in lattice simulations. For the purposes of this talk, we focus on the Delta(1232) resonance and discuss how this new method reduces excited state contamination from two-point functions and mention how this will be applied to three-point functions to extract hadronic form factors.Comment: 4 pages, 3 figures, talk given at MENU 2010, Williambsurg, V

    Recent Lattice QCD Results On Nucleon Structure

    Get PDF

    Extrapolation Methods for the Dirac Inverter in Hybrid Monte Carlo

    Full text link
    In Hybrid Monte Carlo(HMC) simulations for full QCD, the gauge fields evolve smoothly as a function of Molecular Dynamics (MD) time. Thus we investigate improved methods of estimating the trial solutions to the Dirac propagator as superpositions of the solutions in the recent past. So far our best extrapolation method reduces the number of Conjugate Gradient iterations per unit MD time by about a factor of 4. Further improvements should be forthcoming as we further exploit the information of past trajectories.Comment: latex file with espcrc2 styl

    Thermodynamics with 3 and 2+1 Flavors of Improved Staggered Quarks

    Get PDF
    We present preliminary results from exploring the phase diagram of finite temperature QCD with three degenerate flavors and with two light flavors and the mass of the third held approximately at the strange quark mass. We use an order αs2a2,a4\alpha_s^2 a^2, a^4 Symanzik improved gauge action and an order αsa2,a4\alpha_s a^2, a^4 improved staggered quark action. The improved staggered action leads to a dispersion relation with diminished lattice artifacts, and hence better thermodynamic properties. It decreases the flavor symmetry breaking of staggered quarks substantially, and we estimate that at the transition temperature for an Nt=8N_t=8 to Nt=10N_t=10 lattice {\em all} pions will be lighter than the lightest kaon. Preliminary results on lattices with Nt=4N_t=4, 6 and 8 are presented.Comment: 3 pages, 6 figures, contribution to Lattice2001(hightemp) August 19--24, 2001, Berlin, German

    Variants of fattening and flavor symmetry restoration

    Full text link
    We study the effects of different "fat link" actions for Kogut-Susskind quarks on flavor symmetry breaking. Our method is mostly empirical - we compute the pion spectrum with different valence quark actions on common sets of sample lattices. Different actions are compared, as best we can, at equivalent physical points. We find significant reductions in flavor symmetry breaking relative to the conventional or to the "link plus staple" actions, with a reasonable cost in computer time. We also develop and test a scheme for approximate unitarization of the fat links. While our tests have concentrated on the valence quark action, our results will be useful in designing simulations with dynamical quarks.Comment: 16 pages, LaTeX, PostScript figures include

    Calculation of the neutron electric dipole moment with two dynamical flavors of domain wall fermions

    Full text link
    We present a study of the neutron electric dipole moment (d⃗N\vec d_N) within the framework of lattice QCD with two flavors of dynamical lig ht quarks. The dipole moment is sensitive to the topological structure of the gaug e fields, and accuracy can only be achieved by using dynamical, or sea quark, calc ulations. However, the topological charge evolves slowly in these calculations, le ading to a relatively large uncertainty in d⃗N\vec d_N. It is shown, using quenched configurations, that a better sampling of the charge d istribution reduces this problem, but because the CP even part of the fermion determinant is absent, both the topological charge dis tribution and d⃗N\vec d_N are pathological in the chiral limit. We discuss the statistical and systematic uncertainties arising from the topological charge distr ibution and unphysical size of the quark mass in our calculations and prospects fo r eliminating them. Our calculations employ the RBC collaboration two flavor domain wall fermion and DBW2 gauge action lattices with inverse lattice spacing a−1≈a^{-1}\approx 1.7 GeV, physical volume V≈(2V\approx (2 fm)3^3, and light quark mass roughly equal to the strange quark mass (msea=0.03m_{sea}=0.03 and 0.04). We determine a value of the electric dipole moment that is zero withi n (statistical) errors, ∣d⃗N∣=−0.04(20)|\vec d_N| = -0.04(20) e-θ\theta-fm at the smaller sea quark mass. Satisfactory results for the magnetic and electric form factors of the proton and neutron are also obtained and presented.Comment: 46 pages. Changed one author addres

    First Calculation of Hyperon Axial Couplings from Lattice QCD

    Full text link
    In this work, we report the first lattice calculation of hyperon axial couplings, using the 2+1-flavor MILC configurations and domain-wall fermion valence quarks. Both the Σ\Sigma and Ξ\Xi axial couplings are computed for the first time in lattice QCD. In particular we find that gΣΣ=0.450(21)stat(27)systg_{\Sigma\Sigma} = 0.450(21)_{\rm stat}(27)_{\rm syst} and gΞΞ=−0.277(15)stat(19)systg_{\Xi\Xi} = -0.277(15)_{\rm stat}(19)_{\rm syst}.Comment: 5 pages, 2 figure
    • …
    corecore