1,476 research outputs found
Selforganized 3-band structure of the doped fermionic Ising spin glass
The fermionic Ising spin glass is analyzed for arbitrary filling and for all
temperatures. A selforganized 3-band structure of the model is obtained in the
magnetically ordered phase. Deviation from half filling generates a central
nonmagnetic band, which becomes sharply separated at T=0 by (pseudo)gaps from
upper and lower magnetic bands. Replica symmetry breaking effects are derived
for several observables and correlations. They determine the shape of the
3-band DoS, and, for given chemical potential, influence the fermion filling
strongly in the low temperature regime.Comment: 13 page
The XENON100 exclusion limit without considering Leff as a nuisance parameter
In 2011, the XENON100 experiment has set unprecedented constraints on dark
matter-nucleon interactions, excluding dark matter candidates with masses down
to 6 GeV if the corresponding cross section is larger than 10^{-39} cm^2. The
dependence of the exclusion limit in terms of the scintillation efficiency
(Leff) has been debated at length. To overcome possible criticisms XENON100
performed an analysis in which Leff was considered as a nuisance parameter and
its uncertainties were profiled out by using a Gaussian likelihood in which the
mean value corresponds to the best fit Leff value smoothly extrapolated to zero
below 3 keVnr. Although such a method seems fairly robust, it does not account
for more extreme types of extrapolation nor does it enable to anticipate on how
much the exclusion limit would vary if new data were to support a flat
behaviour for Leff below 3 keVnr, for example. Yet, such a question is crucial
for light dark matter models which are close to the published XENON100 limit.
To answer this issue, we use a maximum Likelihood ratio analysis, as done by
the XENON100 collaboration, but do not consider Leff as a nuisance parameter.
Instead, Leff is obtained directly from the fits to the data. This enables us
to define frequentist confidence intervals by marginalising over Leff.Comment: 10 pages;, 9 figures; references adde
One-step replica symmetry breaking solution for a highly asymmetric two-sublattice fermionic Ising spin glass model in a transverse field
The one-step replica symmetry breaking (RSB) is used to study a
two-sublattice fermionic infinite-range Ising spin glass (SG) model in a
transverse field . The problem is formulated in a Grassmann path
integral formalism within the static approximation. In this model, a parallel
magnetic field breaks the symmetry of the sublattices. It destroys the
antiferromagnetic (AF) order, but it can favor the nonergodic mixed phase
(SG+AF) characterizing an asymmetric RSB region. In this region,
intra-sublattice disordered interactions increase the difference between
the RSB solutions of each sublattice. The freezing temperature shows a higher
increase with when enhances. A discontinue phase transition from the
replica symmetry (RS) solution to the RSB solution can appear with the presence
of an intra-sublattice ferromagnetic average coupling. The field
introduces a quantum spin flip mechanism that suppresses the magnetic orders
leading them to quantum critical points. Results suggest that the quantum
effects are not able to restore the RS solution. However, in the asymmetric RSB
region, can produce a stable RS solution at any finite temperature for
a particular sublattice while the other sublattice still presents RSB solution
for the special case in which only the intra-sublattice spins couple with
disordered interactions.Comment: 11 pages, 8 figures, accepted for publication in Phys. Rev.
Bound hole states in a ferromagnetic (Ga,Mn)As environment
A numerical technique is developed to solve the Luttinger-Kohn equation for
impurity states directly in k-space and is applied to calculate bound hole wave
functions in a ferromagnetic (Ga,Mn)As host. The rich properties of the band
structure of an arbitrarily strained, ferromagnetic zinc-blende semiconductor
yields various features which have direct impact on the detailed shape of a
valence band hole bound to an active impurity. The role of strain is discussed
on the basis of explicit calculations of bound hole states.Comment: 9 pages, 10 figure
Antiferromagnetic Ising spin glass competing with BCS pairing interaction in a transverse field
The competition among spin glass (SG), antiferromagnetism (AF) and local
pairing superconductivity (PAIR) is studied in a two-sublattice fermionic Ising
spin glass model with a local BCS pairing interaction in the presence of an
applied magnetic transverse field . In the present approach, spins in
different sublattices interact with a Gaussian random coupling with an
antiferromagnetic mean and standard deviation . The problem is
formulated in the path integral formalism in which spin operators are
represented by bilinear combinations of Grassmann variables. The saddle-point
Grand Canonical potential is obtained within the static approximation and the
replica symmetric ansatz. The results are analysed in phase diagrams in which
the AF and the SG phases can occur for small ( is the strength of the
local superconductor coupling written in units of ), while the PAIR phase
appears as unique solution for large . However, there is a complex line
transition separating the PAIR phase from the others. It is second order at
high temperature that ends in a tricritical point. The quantum fluctuations
affect deeply the transition lines and the tricritical point due to the
presence of .Comment: 16 pages, 6 figures, accepted Eur. Phys. J.
Nonanalytic quantum oscillator image of complete replica symmetry breaking
We describe the effect of replica symmetry breaking in the field distribution
function P(h) of the T=0 SK-model as the difference between a split Gaussian
and the first excited state of a weakly anharmonic oscillator with
nonanalytic shift by means of the analogy . New numerical
calculations of the leading 100 orders of replica symmetry breaking (RSB) were
performed in order to obtain P(h), employing the exact mapping between density
of states of the fermionic SK-model and P(h) of the standard model,
as derived by Perez-Castillo and Sherrington. Fast convergence towards a fixed
point function for infinite steps of RSB is observed. A surprisingly
small number of harmonic oscillator wave-functions suffices to represent this
fixed point function. This allows to determine an anharmonic potential V(x)
with nonanalytic shift, whose first excited state represents and
hence P(h). The harmonic potential with unconventional shift yields already a very good approximation, since
anharmonic couplings of decay rapidly with
increasing m. We compare the pseudogap-forming effect of replica symmetry
breaking, hosted by the fermionic SK-model, with the analogous effect in the
Coulomb glass as designed by Davies-Lee-Rice and described by M\"uller-Pankov.Comment: 11 pages, 3 figures, submitted to Phil. Mag., special edition in
honour of David Sherrington's 70th birthda
Double Criticality of the Sherrington-Kirkpatrick Model at T=0
Numerical results up to 42nd order of replica symmetry breaking (RSB) are
used to predict the singular structure of the SK spin glass at T=0. We confirm
predominant single parameter scaling and derive corrections for the T=0 order
function q(a), related to a Langevin equation with pseudotime 1/a. a=0 and
a=\infty are shown to be two critical points for \infty-RSB, associated with
two discrete spectra of Parisi block size ratios, attached to a continuous
spectrum. Finite-RSB-size scaling, associated exponents, and T=0-energy are
obtained with unprecedented accuracy.Comment: 4 pages, 5 figure
Fermionic SK-models with Hubbard interaction: Magnetism and electronic structure
Models with range-free frustrated Ising spin- and Hubbard interaction are
treated exactly by means of the discrete time slicing method. Critical and
tricritical points, correlations, and the fermion propagator, are derived as a
function of temperature T, chemical potential \mu, Hubbard coupling U, and spin
glass energy J. The phase diagram is obtained. Replica symmetry breaking
(RSB)-effects are evaluated up to four-step order (4RSB). The use of exact
relations together with the 4RSB-solutions allow to model exact solutions by
interpolation. For T=0, our numerical results provide strong evidence that the
exact density of states in the spin glass pseudogap regime obeys \rho(E)=const
|E-E_F| for energies close to the Fermi level. Rapid convergence of \rho'(E_F)
under increasing order of RSB is observed. The leading term resembles the
Efros-Shklovskii Coulomb pseudogap of localized disordered fermionic systems in
2D. Beyond half filling we obtain a quadratic dependence of the fermion filling
factor on the chemical potential. We find a half filling transition between a
phase for U>\mu, where the Fermi level lies inside the Hubbard gap, into a
phase where \mu(>U) is located at the center of the upper spin glass pseudogap
(SG-gap). For \mu>U the Hubbard gap combines with the lower one of two SG-gaps
(phase I), while for \mu<U it joins the sole SG-gap of the half-filling regime
(phase II). We predict scaling behaviour at the continuous half filling
transition. Implications of the half-filling transition between the deeper
insulating phase II and phase I for delocalization due to hopping processes in
itinerant model extensions are discussed and metal-insulator transition
scenarios described.Comment: 29 pages, 26 Figures, 4 jpeg- and 3 gif-Fig-files include
Akzeptanz von Tiergesundheitsplänen bei Landwirten – Ergebnisse einer Befragung bei 60 Betrieben
In organic farming the ambitious claims in enhancing and keeping animal health are often not realised. The implementation of animal health plans should clear this deficit effectively. Experiences with British and Danish herd health plans showed that the acceptance of plans is an essential part for its successful transfer into practice. But anyhow, this aspect has not been regarded sufficiently. To avoid similar mistakes like done in former institution tests a social study is integrated into German projects that deal with the implementation of animal health plans in poultry, dairy, and pig hus-bandry. To get more information about the acceptance, the study requires farmers’ attitudes to herd health plans, the motivation to animal health and financial and work capabilities as well
- …