7 research outputs found

    Biochemical analysis of RBBP6 proteins and their impact on tumour suppressors

    Get PDF
    A dissertation submitted to the Faculty of Science, University of Witwatersrand, in fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2014

    Dependence on a variable residue limits the breadth of an HIV MPER neutralizing antibody, despite convergent evolution with broadly neutralizing antibodies

    Get PDF
    Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize \u3e 80 % of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes (IGHV1 - 69 and IGKV3 - 20) and form a bNAb epitope class. Furthermore, convergent evolution within these two lineages towards a 111.2GW111.3 motif in the CDRH3 is known to enhance neutralization potency. We have previously isolated an MPER neutralizing antibody, CAP206 - CH12, that uses these same germline heavy and light chain genes but lacks breadth (neutralizing only 6 % of heterologous viruses). Longitudinal sequencing of the CAP206-CH12 lineage over three years revealed similar convergent evolution towards 111.2GW111.3 among some lineage members. Mutagenesis of CAP206-CH12 from 111.2GL111.3 to 111.2GW111.3 and the introduction of the double GWGW motif into CAP206-CH12 modestly improved neutralization potency (2.5 3 -fold) but did not reach the levels of potency of VRC42.01, 4E10 or PGZL1. To explore the lack of potency/breadth, viral mutagenesis was performed to map the CAP206-CH12 epitope. This indicated that CAP206-CH12 is dependent on D674, a highly variable residue at the solvent-exposed elbow of MPER. In contrast, VRC42.01, PGZL1 and 4E10 were dependent on highly conserved residues (W672, F673, T676, andW680) facing the hydrophobic patch of the MPER. Therefore, while CAP206-CH12, VRC42.01, PGZL1 and 4E10 share germline genes and show some evidence of convergent evolution, their dependence on different amino acids, which impacts orientation of binding to the MPER, result in differences in breadth and potency. These data have implications for the design of HIV vaccines directed at the MPER epitope

    Cross-reactive neutralizing antibody responses elicited by SARS-CoV-2 501Y.V2 (B.1.351)

    Get PDF
    No abstract available.The South African Medical Research Council, the Centers for Disease Control and Prevention, the ELMA South Africa Foundation, the Wellcome Trust, the Fogarty International Center of the National Institutes of Health, the FLAIR Fellowship program, the European and Developing Countries Clinical Trials Partnership 2 of the European Union Horizon 2020 program, the South African Research Chairs Initiative of the Department of Science and Innovation and the National Research Foundation.http://www.nejm.orgam2022Internal Medicin

    Ad26.COV2.S breakthrough infections induce high titers of neutralizing antibodies against Omicron and other SARS-CoV-2 variants of concern

    Get PDF
    The Janssen (Johnson & Johnson) Ad26.COV2.S non-replicating viral vector vaccine has been widely deployed for COVID-19 vaccination programs in resource-limited settings. Here we confirm that neutralizing and binding antibody responses to Ad26.COV2.S vaccination are stable for 6 months post-vaccination, when tested against multiple SARS-CoV-2 variants. Secondly, using longitudinal samples from individuals who experienced clinically mild breakthrough infections 4 to 5 months after vaccination, we show dramatically boosted binding antibodies, Fc effector function, and neutralization. These high titer responses are of similar magnitude to humoral immune responses measured in convalescent donors who had been hospitalized with severe illness, and are cross-reactive against diverse SARS-CoV-2 variants, including the neutralizationresistant Omicron (B.1.1.529) variant that currently dominates global infections, as well as SARS-CoV-1. These data have implications for population immunity in areas where the Ad26.COV2.S vaccine has been widely deployed, but where ongoing infections continue to occur at high levels.The South African Medical Research Council, the South African Research Chairs Initiative of the Department of Science and Innovation; the National Research Foundation of South Africa, the EDCTP2 program of the European Union’s Horizon 2020 program, the Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), which is supported by core funding from the Wellcome Trust and the Poliomyelitis Research Foundation, MRC UK, NRF, the Lily and Ernst Hausmann Trust and L’Oreal/Unesco Women in Science South Africa Young Talents awardee.http://www.cell.com/cell-host-microbe/homeImmunologyInternal Medicin

    SARS-CoV-2 Omicron triggers cross-reactive neutralization and Fc effector functions in previously vaccinated, but not unvaccinated, individuals

    Get PDF
    The SARS-CoV-2 Omicron variant escapes neutralizing antibodies elicited by vaccines or infection. However, whether Omicron triggers cross-reactive humoral responses to other variants of concern (VOCs) remains unknown. We used plasma from 20 unvaccinated and 7 vaccinated individuals infected by Omicron BA.1 to test binding, Fc effector function, and neutralization against VOCs. In unvaccinated individuals, Fc effector function and binding antibodies targeted Omicron and other VOCs at comparable levels. However, Omicron BA.1- triggered neutralization was not extensively cross-reactive for VOCs (14- to 31-fold titer reduction), and we observed 4-fold decreased titers against Omicron BA.2. In contrast, vaccination followed by breakthrough Omicron infection associated with improved cross-neutralization of VOCs with titers exceeding 1:2,100. This has important implications for the vulnerability of unvaccinated Omicron-infected individuals to reinfection by circulating and emerging VOCs. Although Omicron-based immunogens might be adequate boosters, they are unlikely to be superior to existing vaccines for priming in SARS-CoV-2-naive individuals.The South African Research Chairs Initiative of the Department of Science and Innovation, the National Research Foundation of South Africa, the South African Medical Research Council Strategic Health Innovation Partnerships (SHIP) program, the Centre for the AIDS Programme of Research in South Africa (CAPRISA), the Bill and Melinda Gates Foundation through the Global Immunology and Immune Sequencing for Epidemic Response (GIISER) program and L’Oreal/UNESCO Women in Science South Africa Young Talents award.http://www.cell.com/cell-host-microbe/homeam2023ImmunologyMedical Virolog

    SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma

    Get PDF
    SARS-CoV-2 501Y.V2 (B.1.351), a novel lineage of coronavirus causing COVID-19, contains substitutions in two immunodominant domains of the spike protein. Here, we show that pseudovirus expressing 501Y.V2 spike protein completely escapes three classes of therapeutically relevant antibodies. This pseudovirus also exhibits substantial to complete escape from neutralization, but not binding, by convalescent plasma. These data highlight the prospect of reinfection with antigenically distinct variants and foreshadows reduced efficacy of spike-based vaccines.Supplementary Information: Supplementary Figs. 1 and 2The South African Medical Research Council, the Wellcome Trust, US Centers for Disease Control and Prevention and the ELMA South Africa Foundation.http://www.nature.com/nm2021-09-02hj2021ImmunologyInternal Medicin
    corecore