121 research outputs found
Leaf trichomes in Metrosideros polymorpha can contribute to avoiding extra water stress by impeding gall formation
Background and Aims: Plants inhabiting arid environments tend to have leaf trichomes, but their adaptive significance remains unclear. Leaf trichomes are known to play a role in plant defence against herbivores, including gall makers. Because gall formation can increase water loss partly through increased surface area, we tested the novel hypothesis that leaf trichomes could contribute to avoiding extra water stress by impeding gall formation, which would have adaptive advantages in arid environments. Methods: We focused on Metrosideros polymorpha, an endemic tree species in the Hawaiian Islands, whose leaves often suffer from galls formed by specialist insects, Hawaiian psyllids (Pariaconus spp.). There is large variation in the amount of leaf trichomes (0–40 % of leaf mass) in M. polymorpha. Three gall types are found on the island of Hawaii: the largest is the ‘cone’ type, followed by ‘flat’ and ‘pit’ types. We conducted laboratory experiments to quantify the extent to which gall formation is associated with leaf water relations. We also conducted a field census of 1779 individuals from 48 populations across the entire range of habitats of M. polymorpha on the island of Hawaii to evaluate associations between gall formation (presence and abundance) and the amount of leaf trichomes. Key Results: Our laboratory experiment showed that leaf minimum conductance was significantly higher in leaves with a greater number of cone- or flat-type galls but not pit-type galls. Our field census suggested that the amount of trichomes was negatively associated with probabilities of the presence of cone- or flat-type galls but not pit-type galls, irrespective of environmental factors. Conclusion: Our results suggest that leaf trichomes in M. polymorpha can contribute to the avoidance of extra water stress through interactions with some gall-making species, and potentially increase the fitness of plants under arid conditions
Creation of silicon vacancy color centers with a narrow emission line in nanodiamonds by ion implantation
Nanodiamonds containing silicon-vacancy (SiV) centers with high brightness, high photo-stability, and a narrow zero phonon line (ZPL) have attracted attention for bioimaging, nanoscale thermometry, and quantum technologies. One method to create such nanodiamonds is the milling of diamond films synthesized by chemical vapor deposition (CVD). However, this requires post-processing such as acid treatment and centrifugation after the milling process. Therefore, the number of SiV center-containing nanodiamonds made from an initial CVD diamond is small. An alternative method without these problems is the implantation of Si ions into preselected nanodiamonds. This method, however, has an issue regarding the ZPL linewidths, which are more than twice as broad as those in nanodiamonds synthesized by CVD. In order to reduce the linewidth, we employed annealing treatment at high temperatures (up to 1100°C) and high vacuum after the implantation. For an ion fluence of 1013 ions/cm2, a ZPL with a linewidth of about 7 nm at room temperature was observed for a nanodiamond with a median size of 29.9 ± 16.0 nm. This was close to the linewidth for nanodiamonds created by CVD
The acquisitive–conservative axis of leaf trait variation emerges even in homogeneous environments
The acquisitive-conservative axis of plant ecological strategies results in a pattern of leaf trait covariation that captures the balance between leaf construction costs and plant growth potential. Studies evaluating trait covariation within species are scarcer, and have mostly dealt with variation in response to environmental gradients. Little work has been published on intraspecific patterns of leaf trait covariation in the absence of strong environmental variation.Methods: We analysed covariation of four leaf functional traits (SLA: specific leaf area, LDMC: leaf dry matter content, Ft: force to tear, and Nm: leaf nitrogen content) in six Poaceae and four Fabaceae species common in the dry Chaco forest of Central Argentina, growing in the field and in a common garden. We compared intraspecific covariation patterns (slopes, correlation and effect size) of leaf functional traits with global interspecific covariation patterns. Additionally, we checked for possible climatic and edaphic factors that could affect the intraspecific covariation pattern.Key Results: We found negative correlations for the LDMC-SLA, Ft-SLA, LDMC-Nm , and Ft-Nm trait pairs. This intraspecific covariation pattern found both in the field and in the common garden and not be explained by climatic or edaphic variation in the field follows the expected acquisitive-conservative axis. At the same time, we found quantitative differences in slopes among different species, and between these intraspecific patterns and the interspecific ones. Many of these differences seem to be idiosyncratic, but some appear consistent among species (e.g.all the intraspecific LDMC-SLA and LDMC-Nm slopes tend to be shallower than the global).Conclusions: Our study indicates that the acquisitive-conservative leaf functional trait covariation pattern occurs at the intraspecific level even in the absence of relevant environmental variation in the field. This suggests a high degree of variation-covariation in leaf functional traits not driven by environmental variables.Fil: Gorne, Lucas Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Minden, Vanessa. University of Oldenburg; Alemania. Vrije Universiteit Brussel; BélgicaFil: Onoda, Yusuke. Kyoto University. School of Agriculture; JapónFil: Kramer, Koen. Wageningen University; Países BajosFil: Muir, Christopher. University Of Hawaii; Estados UnidosFil: Michaletz, Sean T. University of British Columbia; CanadáFil: Lavorel, Sandra. Centre National de la Recherche Scientifique; FranciaFil: Sharpe, Joanne. Sharplex Services, Edgecomb; Estados UnidosFil: Jansen, Steven. Universitat Ulm; AlemaniaFil: Slot, Martijn. Smithsonian Tropical Research Institute; PanamáFil: Chacon, Maximiliano Eduardo. Universidad de Costa Rica; Costa RicaFil: Boenisch, Gerhard. Max Planck Institute For Biogeochemistry; Alemani
Incorporating pressure–volume traits into the leaf economics spectrum
In recent years, attempts have been made in linking pressure–volume parameters and the leaf economics spectrum to expand our knowledge of the interrelationships among leaf traits. We provide theoretical and empirical evidence for the coordination of the turgor loss point and associated traits with net CO2 assimilation (An) and leaf mass per area (LMA). We measured gas exchange, pressure–volume curves and leaf structure in 45 ferns and angiosperms, and explored the anatomical and chemical basis of the key traits. We propose that the coordination observed between mass-based An, capacitance and the turgor loss point (πtlp) emerges from their shared link with leaf density (one of the components of LMA) and, specially, leaf saturated water content (LSWC), which in turn relates to cell size and nitrogen and carbon content. Thus, considering the components of LMA and LSWC in ecophysiological studies can provide a broader perspective on leaf structure and function.Publishe
Revisiting the Functional Basis of Sclerophylly Within the Leaf Economics Spectrum of Oaks: Different Roads to Rome
Purpose of Review Defining the mechanisms behind and the leaf economic consequences of the development of sclerophylly in woody plants will allow us to understand its ecological implications, anticipate the potential for adaptation of different tree species to global change, and define new woody plant ideotypes for stress tolerance. Recent Findings Sclerophylly has evolved independently in different woody plant genera and has been traditionally considered as a stress-tolerance trait. However, the underlying drivers for this functional trait are still a matter of debate; it has been proposed as an adaptive response to miscellaneous stress factors, such as nutrient scarcity, drought stress, herbivory, and cold tolerance, and due to the large investment costs of sclerophylly, it is generally associated with a longer leaf life span. The genusQuercusconstitutes a unique living laboratory to understand global adaptive patterns along the leaf economic spectrum in forest trees. With more than 400 species, oaks are distributed along six zonobiomes and its versatility has resulted in a wide range of variations in leaf functional traits and contrasting adaptive strategies. However, although this wide variability cannot be explained alone by any of the ecological factors considered, such as drought, nutrient scarcity, low temperatures during vegetative period, and physical damage, neither any of them could be fully discarded. Noteworthy, our study also suggests that these constraints may have a synergistic effect, and from a functional point of view, we can conclude that in oaks leaf habit largely modulates the physiological implications of sclerophylly.Esta investigación ha sido financiada por el Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) con la subvención RTA2015--00054-C02-01 y por el grupo de investigación H09_20R del Gobierno de Aragón. El trabajo de David Alonso Forn está financiado por un contrato FPI-INIA BES-2017-081208. La investigación de Domingo Sancho Knapik cuenta con el apoyo de un contrato DOC INIA-CCAA cofinanciado por el INIA y el Fondo Social Europeo.Publishe
Population health and regional variations of disease burden in Japan, 1990–2015:a systematic subnational analysis for the Global Burden of Disease Study 2015
BackgroundJapan has entered the era of super-ageing and advanced health transition, which is increasingly putting pressure on the sustainability of its health system. The level and pace of this health transition might vary across regions within Japan and concern is growing about increasing regional variations in disease burden. The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) provides a comprehensive, comparable framework. We used data from GBD 2015 with the aim to quantify the burden of disease and injuries, and to attribute risk factors in Japan at a subnational, prefecture-level.MethodsWe used data from GBD 2015 for 315 causes and 79 risk factors of death, disease, and injury incidence and prevalence to measure the burden of diseases and injuries in Japan and in the 47 Japanese prefectures from 1990 to 2015. We extracted data from GBD 2015 to assess mortality, causes of death, years of life lost (YLLs), years lived with disability (YLDs), disability-adjusted life-years (DALYs), life expectancy, and healthy life expectancy (HALE) in Japan and its 47 prefectures. We split extracted data by prefecture and applied GBD methods to generate estimates of burden, and attributable burden due to known risk factors. We examined the prefecture-level relationships of common health system inputs (eg, health expenditure and workforces) to the GBD outputs in 2015 to address underlying determinants of regional health variations.FindingsLife expectancy at birth in Japan increased by 4·2 years from 79·0 years (95% uncertainty interval [UI] 79·0 to 79·0) to 83·2 years (83·1 to 83·2) between 1990 and 2015. However, the gaps between prefectures with the lowest and highest life expectancies and HALE have widened, from 2·5 to 3·1 years and from 2·3 to 2·7 years, respectively, from 1990 to 2015. Although overall age-standardised death rates decreased by 29·0% (28·7 to 29·3) from 1990 to 2015, the rates of mortality decline in this period substantially varied across the prefectures, ranging from -32·4% (-34·8 to -30·0) to -22·0% (-20·4 to -20·1). During the same time period, the rate of age-standardised DALYs was reduced overall by 19·8% (17·9 to 22·0). The reduction in rates of age-standardised YLDs was very small by 3·5% (2·6 to 4·3). The pace of reduction in mortality and DALYs in many leading causes has largely levelled off since 2005. Known risk factors accounted for 34·5% (32·4 to 36·9) of DALYs; the two leading behavioural risk factors were unhealthy diets and tobacco smoking in 2015. The common health system inputs were not associated with age-standardised death and DALY rates in 2015.InterpretationJapan has been successful overall in reducing mortality and disability from most major diseases. However, progress has slowed down and health variations between prefectures is growing. In view of the limited association between the prefecture-level health system inputs and health outcomes, the potential sources of regional variations, including subnational health system performance, urgently need assessment.FundingBill & Melinda Gates Foundation, Japan Ministry of Education, Science, Sports and Culture, Japan Ministry of Health, Labour and Welfare, AXA CR Fixed Income Fund and AXA Research Fund
Disentangling leaf structural and material properties in relation to their anatomical and chemical compositional traits in oaks (Quercus L.)
The existence of sclerophyllous plants has been considered an adaptive strategy against different environmental stresses. As it literally means “hard-leaved”, it is essential to quantify the leaf mechanical properties to understand sclerophylly. However, the relative importance of each leaf trait on mechanical properties is not yet well established. The genus Quercus is an excellent system to shed light on this since it minimizes phylogenetic variation while having a wide variation in sclerophylly. Thus, leaf anatomical traits and cell wall composition were measured, analyzing their relationship with LMA and leaf mechanical properties in a set of 25 oak species. Outer wall contributed strongly to leaf mechanical strength. Moreover, cellulose plays a critical role in increasing leaf strength and toughness. The PCA plot based on leaf trait values clearly separated Quercus species into two groups corresponding to evergreen and deciduous species. Sclerophyllous Quercus species are tougher and stronger due to their thicker epidermis outer wall and/or higher cellulose concentration. Furthermore, section Ilex species share common traits regardless of they occupy quite different climates. In addition, evergreen species living in Mediterranean-type climates share common leaf traits irrespective of their different phylogenetic origin.Unpublishe
Plant functional traits have globally consistent effects on competition.
Phenotypic traits and their associated trade-offs have been shown to have globally consistent effects on individual plant physiological functions, but how these effects scale up to influence competition, a key driver of community assembly in terrestrial vegetation, has remained unclear. Here we use growth data from more than 3 million trees in over 140,000 plots across the world to show how three key functional traits--wood density, specific leaf area and maximum height--consistently influence competitive interactions. Fast maximum growth of a species was correlated negatively with its wood density in all biomes, and positively with its specific leaf area in most biomes. Low wood density was also correlated with a low ability to tolerate competition and a low competitive effect on neighbours, while high specific leaf area was correlated with a low competitive effect. Thus, traits generate trade-offs between performance with competition versus performance without competition, a fundamental ingredient in the classical hypothesis that the coexistence of plant species is enabled via differentiation in their successional strategies. Competition within species was stronger than between species, but an increase in trait dissimilarity between species had little influence in weakening competition. No benefit of dissimilarity was detected for specific leaf area or wood density, and only a weak benefit for maximum height. Our trait-based approach to modelling competition makes generalization possible across the forest ecosystems of the world and their highly diverse species composition.We are especially grateful to the researchers whose long-term commitment to establish and maintain forest plots and their associated databases made this study possible, and to those who granted us data access: forest inventories and permanent plots of New Zealand, Spain (MAGRAMA), France, Switzerland, Sweden, US and Canada (for the provinces of Quebec provided by the Ministère des Ressources Naturelles du Québec, Ontario provided by OnTAP’s Growth and Yield Program of the Ontario Ministry of Natural Resources, Saskatchewan, Manitoba, New Brunswick, Newfoundland and Labrador), CTFS (BCI and LTER-Luquillo), Taiwan (Fushan), Cirad (Paracou with funding by CEBA, ANR-10-LABX-25-01), Cirad, MEFCP and ICRA (M’Baïki) and Japan. We thank MPI-BGC Jena, who host TRY, and the international funding networks supporting TRY (IGBP, DIVERSITAS, GLP, NERC, QUEST, FRB and GIS Climate). G.K. was supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Program (Demo-Traits project, no. 299340). The working group that initiated this synthesis was supported by Macquarie University and by Australian Research Council through a fellowship to M.W.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nature1647
Mapping local and global variability in plant trait distributions
Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration - specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm), we characterize how traits vary within and among over 50,000 ∼50×50-km cells across the entire vegetated land surface. We do this in several ways - without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means
- …