42 research outputs found

    Signal amplification using "spot on-a-chip" technology for the identification of proteins via MALDI-TOF MS

    No full text
    The presented "spot-on-a-chip" technology enables easy enrichment of samples in the low nanomolar (1-5 nM) range and provides a fast and reliable automated sample preparation method for performing matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis with high sensitivity and throughput. Through microdispensing, which allows accurate deposition of 60-pL droplets, dilute samples were enriched by making multiple droplet depositions in nanovials. The sample was confined to a defined spot area (300 x 300 mum), and multiple depositions increase the surface density of analyte in the nanovial, thereby providing detection of low attomole levels. The impact of the nanovial geometry with respect to the MALDI-TOF MS resolution for peptides deposited in the microfabricated silicon vials was investigated and the optimal geometry and size were determined. The spot-on-a-chip technology, that is, the combination of microdispensing, micromachined silicon nanovials and on-spot enrichment provides a signal amplification of at least 10-50 times as compared to an ordinary sample preparation. The linearity of the enrichment effect is shown by the analysis of a peptide mixture at the 5 nM level. The signal amplification provided by the spot-on-a-chip enrichment is demonstrated by the analysis of relevant biological samples, interleukin-8 from a spiked cell supernatant, and by successful protein identification of an excised spot from a high-sensitivity silver-stained two-dimensional electrophoresis gel separation

    Connective Tissue Growth Factor (CTGF) contributes to joint homeostasis and osteoarthritis severity by controlling the matrix sequestration and activation of latent TGFβ

    No full text
    Objectives One mechanism by which cartilage responds to mechanical load is by releasing heparinbound growth factors from the pericellular matrix (PCM). By proteomic analysis of the PCM, we identified connective tissue growth factor (CTGF) and here investigate its function and mechanism of action. Methods# ecombinant CTGF (rCTGF) was used to stimulate human chondrocytes for microarray analysis. Endogenous CTGF was investigated by in vitro binding assays and confocal microscopy. Its release from cut cartilage (injury CM) was analysed by Western blot under reducing and non-reducing conditions. A postnatal, conditional CtgfcKO mouse was generated for cartilage injury experiments and to explore the course of osteoarthritis (OA) by destabilisation of the medial meniscus. siRNA knockdown was performed on isolated human chondrocytes. Results he biological responses of rCTGF were TGFβ dependent. CTGF displaced latent TGFβ from cartilage and both were released on cartilage injury. CTGF and latent TGFβ migrated as a single high molecular weight band under non-reducing conditions, suggesting that they were in a covalent (disulfide) complex. This was confirmed by immunoprecipitation. Using CtgfcKO mice, CTGF was required for sequestration of latent TGFβ in the matrix and activation of the latent complex at the cell surface through TGFβR3. In vivo deletion of CTGF increased the thickness of the articular cartilage and protected mice from OA. Conclusions# CTGF is a latent TGFβ binding protein that controls the matrix sequestration and activation of TGFβ in cartilage. Deletion of CTGF in vivo caused a paradoxical increase in Smad2 phosphorylation resulting in thicker cartilage that was protected from OA.</p
    corecore