200 research outputs found

    Efficient management of distributed and dynamic ontologies

    Get PDF

    Ontology design and management for eCare services

    Get PDF

    Semantic reasoning for intelligent emergency response applications

    Get PDF
    Emergency response applications require the processing of large amounts of data, generated by a diverse set of sensors and devices, in order to provide for an accurate and concise view of the situation at hand. The adoption of semantic technologies allows for the definition of a formal domain model and intelligent data processing and reasoning on this model based on generated device and sensor measurements. This paper presents a novel approach to emergency response applications, such as fire fighting, integrating a formal semantic domain model into an event-based decision support system, which supports reasoning on this model. The developed model consists of several generic ontologies describing concepts and properties which can be applied to diverse context-aware applications. These are extended with emergency response specific ontologies. Additionally, inference on the model performed by a reasoning engine is dynamically synchronized with the rest of the architectural components. This allows to automatically trigger events based on predefined conditions. The proposed ontology and developed reasoning methodology is validated on two scenarios, i.e. (i) the construction of an emergency response incident and corresponding scenario and (ii) monitoring of the state of a fire fighter during an emergency response

    The OCarePlatform : a context-aware system to support independent living

    Get PDF
    Background: Currently, healthcare services, such as institutional care facilities, are burdened with an increasing number of elderly people and individuals with chronic illnesses and a decreasing number of competent caregivers. Objectives: To relieve the burden on healthcare services, independent living at home could be facilitated, by offering individuals and their (in)formal caregivers support in their daily care and needs. With the rise of pervasive healthcare, new information technology solutions can assist elderly people ("residents") and their caregivers to allow residents to live independently for as long as possible. Methods: To this end, the OCarePlatform system was designed. This semantic, data-driven and cloud based back-end system facilitates independent living by offering information and knowledge-based services to the resident and his/her (in)formal caregivers. Data and context information are gathered to realize context-aware and personalized services and to support residents in meeting their daily needs. This body of data, originating from heterogeneous data and information sources, is sent to personalized services, where is fused, thus creating an overview of the resident's current situation. Results: The architecture of the OCarePlatform is proposed, which is based on a service-oriented approach, together with its different components and their interactions. The implementation details are presented, together with a running example. A scalability and performance study of the OCarePlatform was performed. The results indicate that the OCarePlatform is able to support a realistic working environment and respond to a trigger in less than 5 seconds. The system is highly dependent on the allocated memory. Conclusion: The data-driven character of the OCarePlatform facilitates easy plug-in of new functionality, enabling the design of personalized, context-aware services. The OCarePlatform leads to better support for elderly people and individuals with chronic illnesses, who live independently. (C) 2016 Elsevier Ireland Ltd. All rights reserved

    Demonstration of a stream reasoning platform on low-end devices to enable personalized real-time cycling feedback

    Get PDF
    During amateur cycling training, analyzing sensor data in real-time would allow riders to receive immediate feedback on how they are performing, and adapt their training accordingly. In this paper, a solution with Semantic Web technologies is presented that gives such real-time personalized feedback, by integrating the data streams with domain knowledge, rider profiles {\&} other context data. This solution consists of a stream reasoning engine running on a low-end Raspberry Pi device, and a tablet app showing feedback based on the continuous query results. To demonstrate this in a static environment, a virtual training app is presented, allowing a user to simulate an amateur cycling training

    Design of an ontology for decision support in VR exposure therapy

    Get PDF
    Virtual Reality (VR) is finding its way into many domains, including healthcare. Therapists greatly benefit from having any scenario in VR at their disposal for exposure therapy. However, adapting the VR environment to the needs of the patient is time-consuming. Therefore, an intelligent decision support system that takes context information into account would be a big improvement for personalised VR therapy. In this paper, a semantic ontology is presented for modelling relevant concepts and relations in the context of anxiety therapy in VR. The necessary knowledge was collected through workshops with therapists, this resulted in a layered ontology. Furthermore, semantic reasoning through logical rules enables deduction of interesting high-level knowledge from low-level data. The presented ontology is a starting point for further research on intelligent adaptation algorithms for personalised VR exposure therapy
    corecore