3 research outputs found

    Characterization of sucrose-negative Pasteurella multocida variants, including isolates from large-cat bite wounds

    No full text
    To validate the identification of Pasteurella multocida-like bacteria negative for acid formation from sucrose, including isolates from bite wounds caused by large cats, 17 strains were phenotypically and genotypically characterized. Phylogenetic analysis of partially sequenced rpoB and infB genes showed the monophyly of the strains characterized and the reference strains of P. multocida. The sucrose-negative strains formed two groups, one related to reference strains of P. multocida and the other related to a separate species-like group (taxon 45 of Bisgaard). DNA-DNA hybridization further documented the species-like nature of this group. Ribotyping showed the heterogeneity of all strains except four strains that shared the same ribotype and that were isolated from bovine lungs. Phylogenetic analysis by 16S rRNA sequence comparison showed the monophyly of the strains characterized and the reference strains of P. multocida. Two strains isolated from leopard bite wounds were related to the type strain of P. dagmatis; however, they represented a new taxon (taxon 46 of Bisgaard), in accordance with their distinct phenotypic and genotypic identifications. The present study documents that sucrose-negative strains of P. multocida-like bacteria belong to two genotypically distinct groups. The study further confirms the phenotypic heterogeneity of P. multocida strains and documents two new species-like taxa of Pasteurella related to P. multocida. Until diagnostic tools have been further elaborated, special care should be taken in the identification of Pasteurella-like bacteria isolated from bite wounds caused by large cats. The evidence of phenotypic and genotypic divergence calls for the further development of PCR tests and DNA sequencing to document doubtful isolates

    Investigation of Outbreaks of Salmonella enterica Serovar Typhimurium and Its Monophasic Variants Using Whole-Genome Sequencing, Denmark

    Get PDF
    Whole-genome sequencing is rapidly replacing current molecular typing methods for surveillance purposes. Our study evaluates core-genome single-nucleotide polymorphism analysis for outbreak detection and linking of sources of Salmonella enterica serovar Typhimurium and its monophasic variants during a 7-month surveillance period in Denmark. We reanalyzed and defined 8 previously characterized outbreaks from the phylogenetic relatedness of the isolates, epidemiologic data, and food traceback investigations. All outbreaks were identified, and we were able to exclude unrelated and include additional related human cases. We were furthermore able to link possible food and veterinary sources to the outbreaks. Isolates clustered according to sequence types (STs) 19, 34, and 36. Our study shows that core-genome single-nucleotide polymorphism analysis is suitable for surveillance and outbreak investigation for Salmonella Typhimurium (ST19 and ST36), but whole genome–wide analysis may be required for the tight genetic clone of monophasic variants (ST34)
    corecore