121 research outputs found
Solutal Benard-Marangoni Instability as a Growth Mechanism for Single-Walled Carbon Nanotubes
Abstract In the past few years, considerable progress has been achieved in understanding the growth mechanism of single-walled carbon nanotubes (C-SWNTs). Nevertheless, the nucleation of C-SWNTs still remains partially unexplained by these models. A study of the critical synthesis parameters in the plasma torch process and a review of existing growth mechanisms lead us to propose a new growth mechanism for bundles of C-SWNTs, based on the BĂ©nard-Marangoni instability. It is shown that the conditions occurring at the surface of the catalyst nanoparticle (NP) during the growth of the C-SWNTs give rise to the solutal BMI, which in turn results in a pattern of hexagonal convection cells in the liquid layer on the surface of the NP. The vortex ring flow pattern within these cells is then responsible for the structured growth of the C-SWNT bundles. This model highlights the important parameters required to optimize the synthesis of C-SWNTs
dendrometeR : analyzing the pulse of trees in R
Dendrometers are measurement devices proven to be useful to analyze tree water relations and growth responses in relation to environmental variability. To analyze dendrometer data, two analytical methods prevail: (1) daily approaches that calculate or extract single values per day, and (2) stem-cycle approaches that separate high-resolution dendrometer records into distinct phases of contraction, expansion and stem-radius increment. Especially the stem-cycle approach requires complex algorithms to disentangle cyclic phases. Here, we present an R package, named dendrometeR, that facilitates the analysis of dendrometer data using both analytical methods. By making the package freely available, we make a first step towards comparable and reproducible methods to analyze dendrometer data. The package contains customizable functions to prepare, verify, process and plot dendrometer series, as well as functions that facilitate the analysis of dendrometer data (i.e. daily statistics or extracted phases) in relation to environmental data. The functionality of dendrometeR is illustrated in this note
The Dutch beggars
Thesis (B.L.)--University of Illinois, 1882.Ms.Bound with 8 other humanities theses. IU-
Growth of centimeter scale carbon wires using in-liquid AC arc discharge:
A novel observation of the formation of carbon wire in a carbon-based liquid solvent, using in liquid high voltage AC arc discharge is described. The authors describe the observed phenomenon, technical equipment needed to achieve the effect and preliminary qualitative results of obtained material. The wire consisted of well packed layers of carbon elements. The arc-discharge method is a simple, low cost method for the production of three dimensional carbon structures. A further research is needed to get a thorough understanding of the phenomenon
Measurement of the charm and beauty structure functions using the H1 vertex detector at HERA
Inclusive charm and beauty cross sections are measured in e â p and e + p neutral current collisions at HERA in the kinematic region of photon virtuality 5â€Q 2â€2000 GeV2 and Bjorken scaling variable 0.0002â€xâ€0.05. The data were collected with the H1 detector in the years 2006 and 2007 corresponding to an integrated luminosity of 189 pbâ1. The numbers of charm and beauty events are determined using variables reconstructed by the H1 vertex detector including the impact parameter of tracks to the primary vertex and the position of the secondary vertex. The measurements are combined with previous data and compared to QCD predictions
Study of Charm Fragmentation into D^{*\pm} Mesons in Deep-Inelastic Scattering at HERA
The process of charm quark fragmentation is studied using meson
production in deep-inelastic scattering as measured by the H1 detector at HERA.
Two different regions of phase space are investigated defined by the presence
or absence of a jet containing the meson in the event. The
parameters of fragmentation functions are extracted for QCD models based on
leading order matrix elements and DGLAP or CCFM evolution of partons together
with string fragmentation and particle decays. Additionally, they are
determined for a next-to-leading order QCD calculation in the fixed flavour
number scheme using the independent fragmentation of charm quarks to
mesons.Comment: 33 pages, submitted to EPJ
Global maps of soil temperature
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0â5 and 5â15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (â0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
Global maps of soil temperature
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-kmÂČ resolution for 0â5 and 5â15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-kmÂČ pixels (summarized from 8500 unique temperature sensors) across all the worldâs major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
Jet production in ep collisions at high Q(2) and determination of alpha(s)
The production of jets is studied in deep-inelastic e(+/-) p scattering at large negative four momentum transfer squared 150 LT Q(2) LT 15000 GeV2 using HERA data taken in 1999-2007, corresponding to an integrated luminosity of 395 pb(-1). Inclusive jet, 2-jet and 3-jet cross sections, normalised to the neutral current deep-inelastic scattering cross sections, are measured as functions of Q(2), jet transverse momentum and proton momentum fraction. The measurements are well described by perturbative QCD calculations at next-to-leading order corrected for hadronisation effects. The strong coupling as determined from these measurement
Global maps of soil temperature.
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
- âŠ