31,205 research outputs found

    Time damping of non-adiabatic magnetohydrodynamic waves in a partially ionized prominence plasma: Effect of helium

    Full text link
    Prominences are partially ionized, magnetized plasmas embedded in the solar corona. Damped oscillations and propagating waves are commonly observed. These oscillations have been interpreted in terms of magnetohydrodynamic (MHD) waves. Ion-neutral collisions and non-adiabatic effects (radiation losses and thermal conduction) have been proposed as damping mechanisms. We study the effect of the presence of helium on the time damping of non-adiabatic MHD waves in a plasma composed by electrons, protons, neutral hydrogen, neutral helium (He I), and singly ionized helium (He II) in the single-fluid approximation. The dispersion relation of linear non-adiabatic MHD waves in a homogeneous, unbounded, and partially ionized prominence medium is derived. The period and the damping time of Alfven, slow, fast, and thermal waves are computed. A parametric study of the ratio of the damping time to the period with respect to the helium abundance is performed. The efficiency of ion-neutral collisions as well as thermal conduction is increased by the presence of helium. However, if realistic abundances of helium in prominences (~10%) are considered, this effect has a minor influence on the wave damping. The presence of helium can be safely neglected in studies of MHD waves in partially ionized prominence plasmas.Comment: Research note submitted in A&

    Note on new interesting baryon channels to measure the photon polarization in b -> s gamma

    Full text link
    At LHC a large number of b-flavored baryons will be produced. In this note we propose new baryon modes to determine the photon helicity of the penguin transition b→sγb \to s \gamma. The decay Λb→Λγ\Lambda_b \to \Lambda \gamma has the drawback that the Λ\Lambda, being neutral and long-lived, will escape detection most of the time. To overcome this difficulty, transitions of the type Λb→Λ∗γ\Lambda_b \to \Lambda^{*} \gamma have been proposed, where Λ∗\Lambda^{*} denotes an excited state decaying strongly within the detector into the clean mode pK−p K^-. The doublet Ξb\Xi_b, that decays weakly, has a number of good features. The charged baryon Ξb−\Xi_b^- will decay into the mode Ξ−γ\Xi^- \gamma, where the ground state hyperon Ξ−\Xi^-, although it will decay most of the time outside the detector, can be detected because it is charged. We consider also the decay of Ξb\Xi_b into Ξ∗γ\Xi^{*} \gamma, where a higher mass state Ξ∗\Xi^{*} can decay strongly within the detector. We point out that the initial transverse polarization of Ξb\Xi_b has to be known in all cases. To determine this parameter through the transition Ξb→J/Ψ Ξ\Xi_b \to J/\Psi\ \Xi, we distinguish between different cases, and underline that in some situations one needs {\it theoretical input} on the asymmetry parameter αΞb\alpha_{\Xi_b} of the primary decay. {\it A fortiori} the same considerations apply to the case of the Λb\Lambda_b

    The spatial damping of magnetohydrodynamic waves in a flowing partially ionised prominence plasma

    Full text link
    Solar prominences are partially ionised plasmas displaying flows and oscillations. These oscillations show time and spatial damping and, commonly, have been explained in terms of magnetohydrodynamic (MHD) waves. We study the spatial damping of linear non-adiabatic MHD waves in a flowing partially ionised plasma, having prominence-like physical properties. We consider single fluid equations for a partially ionised hydrogen plasma including in the energy equation optically thin radiation, thermal conduction by electrons and neutrals, and heating. Keeping the frequency real and fixed, we have solved the obtained dispersion relations for the complex wavenumber, k, and have analysed the behaviour of the damping length, wavelength and the ratio of the damping length to the wavelength, versus period, for Alfven, fast, slow and thermal waves.Comment: 28 pages, 9 figure

    The statistical significance of the N-S asymmetry of solar activity revisited

    Full text link
    The main aim of this study is to point out the difficulties found when trying to assess the statistical significance of the North-South asymmetry (hereafter SSNSA) of the most usually considered time series of solar activity. First of all, we distinguish between solar activity time series composed by integer or non-integer and dimensionless data, or composed by non-integer and dimensional data. For each of these cases, we discuss the most suitable statistical tests which can be applied and highlight the difficulties to obtain valid information about the statistical significance of solar activity time series. Our results suggest that, apart from the need to apply the suitable statistical tests, other effects such as the data binning, the considered units and the need, in some tests, to consider groups of data, affect substantially the determination of the statistical significance of the asymmetry. Our main conclusion is that the assessment of the statistical significance of the N-S asymmetry of solar activity is a difficult matter and that an absolute answer cannot be given, since many different effects influence the results given by the statistical tests. In summary, the quantitative results about the statistical significance of the N-S asymmetry of solar activity provided by different authors, as well as the studies about its behaviour, must be considered with care because they depend from the chosen values of different parameters or from the considered units.Comment: Astronomy and Astrophysics Latex, 9 pages, 4 figure

    Transverse oscillations of two coronal loops

    Full text link
    We study transverse fast magnetohydrodynamic waves in a system of two coronal loops modeled as smoothed, dense plasma cylinders in a uniform magnetic field. The collective oscillatory properties of the system due to the interaction between the individual loops are investigated from two points of view. Firstly, the frequency and spatial structure of the normal modes are studied. The system supports four trapped normal modes in which the loops move rigidly in the transverse direction. The direction of the motions is either parallel or perpendicular to the plane containing the axes of the loops. Two of these modes correspond to oscillations of the loops in phase, while in the other two they move in antiphase. Thus, these solutions are the generalization of the kink mode of a single cylinder to the double cylinder case. Secondly, we analyze the time-dependent problem of the excitation of the pair of tubes. We find that depending on the shape and location of the initial disturbance, different normal modes can be excited. The frequencies of normal modes are accurately recovered from the numerical simulations. In some cases, because of the simultaneous excitation of several eigenmodes, the system shows beating and the phase lag between the loops is π/2\pi/2.Comment: Accepted for publication in The Astrophysical Journa
    • …
    corecore