14,869 research outputs found

    The advantage of being slow: the quasi-neutral contact process

    Full text link
    According to the competitive exclusion principle, in a finite ecosystem, extinction occurs naturally when two or more species compete for the same resources. An important question that arises is: when coexistence is not possible, which mechanisms confer an advantage to a given species against the other(s)? In general, it is expected that the species with the higher reproductive/death ratio will win the competition, but other mechanisms, such as asymmetry in interspecific competition or unequal diffusion rates, have been found to change this scenario dramatically. In this work, we examine competitive advantage in the context of quasi-neutral population models, including stochastic models with spatial structure as well as macroscopic (mean-field) descriptions. We employ a two-species contact process in which the "biological clock" of one species is a factor of α\alpha slower than that of the other species. Our results provide new insights into how stochasticity and competition interact to determine extinction in finite spatial systems. We find that a species with a slower biological clock has an advantage if resources are limited, winning the competition against a species with a faster clock, in relatively small systems. Periodic or stochastic environmental variations also favor the slower species, even in much larger systems.Comment: Reviewed extended versio

    Erd\H{o}s-Ko-Rado for random hypergraphs: asymptotics and stability

    Get PDF
    We investigate the asymptotic version of the Erd\H{o}s-Ko-Rado theorem for the random kk-uniform hypergraph Hk(n,p)\mathcal{H}^k(n,p). For 2k(n)n/22 \leq k(n) \leq n/2, let N=(nk)N=\binom{n}k and D=(nkk)D=\binom{n-k}k. We show that with probability tending to 1 as nn\to\infty, the largest intersecting subhypergraph of Hk(n,p)\mathcal{H}^k(n,p) has size (1+o(1))pknN(1+o(1))p\frac kn N, for any pnkln2 ⁣(nk)D1p\gg \frac nk\ln^2\!\left(\frac nk\right)D^{-1}. This lower bound on pp is asymptotically best possible for k=Θ(n)k=\Theta(n). For this range of kk and pp, we are able to show stability as well. A different behavior occurs when k=o(n)k = o(n). In this case, the lower bound on pp is almost optimal. Further, for the small interval D1p(n/k)1εD1D^{-1}\ll p \leq (n/k)^{1-\varepsilon}D^{-1}, the largest intersecting subhypergraph of Hk(n,p)\mathcal{H}^k(n,p) has size Θ(ln(pD)ND1)\Theta(\ln (pD)N D^{-1}), provided that knlnnk \gg \sqrt{n \ln n}. Together with previous work of Balogh, Bohman and Mubayi, these results settle the asymptotic size of the largest intersecting family in Hk(n,p)\mathcal{H}^k(n,p), for essentially all values of pp and kk
    corecore