40,709 research outputs found
Chaos and a Resonance Mechanism for Structure Formation in Inflationary Models
We exhibit a resonance mechanism of amplification of density perturbations in
inflationary mo-dels, using a minimal set of ingredients (an effective
cosmological constant, a scalar field minimally coupled to the gravitational
field and matter), common to most models in the literature of inflation. This
mechanism is based on the structure of homoclinic cylinders, emanating from an
unstable periodic orbit in the neighborhood of a saddle-center critical point,
present in the phase space of the model. The cylindrical structure induces
oscillatory motions of the scales of the universe whenever the orbit visits the
neighborhood of the saddle-center, before the universe enters a period of
exponential expansion. The oscillations of the scale functions produce, by a
resonance mechanism, the amplification of a selected wave number spectrum of
density perturbations, and can explain the hierarchy of scales observed in the
actual universe. The transversal crossings of the homoclinic cylinders induce
chaos in the dynamics of the model, a fact intimately connected to the
resonance mechanism occuring immediately before the exit to inflation.Comment: 4 pages. This essay received an Honorable Mention from the Gravity
Research Foundation, 1998-Ed. To appear in Mod. Phys. Lett.
The collision of two-kinks defects
We have investigated the head-on collision of a two-kink and a two-antikink
pair that arises as a generalization of the model. We have evolved
numerically the Klein-Gordon equation with a new spectral algorithm whose
accuracy and convergence were attested by the numerical tests. As a general
result, the two-kink pair is annihilated radiating away most of the scalar
field. It is possible the production of oscillons-like configurations after the
collision that bounce and coalesce to form a small amplitude oscillon at the
origin. The new feature is the formation of a sequence of quasi-stationary
structures that we have identified as lump-like solutions of non-topological
nature. The amount of time these structures survives depends on the fine-tuning
of the impact velocity.Comment: 14 pages, 9 figure
On Galois-Division Multiple Access Systems: Figures of Merit and Performance Evaluation
A new approach to multiple access based on finite field transforms is
investigated. These schemes, termed Galois-Division Multiple Access (GDMA),
offer compact bandwidth requirements. A new digital transform, the Finite Field
Hartley Transform (FFHT) requires to deal with fields of characteristic p, p
\neq 2. A binary-to-p-ary (p \neq 2) mapping based on the opportunistic
secondary channel is introduced. This allows the use of GDMA in conjunction
with available digital systems. The performance of GDMA is also evaluated.Comment: 6 pages, 4 figures. In: XIX Simposio Brasileiro de Telecomunicacoes,
2001, Fortaleza, CE, Brazi
- …