397 research outputs found

    PUMA: Efficient and Low-Cost Memory Allocation and Alignment Support for Processing-Using-Memory Architectures

    Full text link
    Processing-using-DRAM (PUD) architectures impose a restrictive data layout and alignment for their operands, where source and destination operands (i) must reside in the same DRAM subarray (i.e., a group of DRAM rows sharing the same row buffer and row decoder) and (ii) are aligned to the boundaries of a DRAM row. However, standard memory allocation routines (i.e., malloc, posix_memalign, and huge pages-based memory allocation) fail to meet the data layout and alignment requirements for PUD architectures to operate successfully. To allow the memory allocation API to influence the OS memory allocator and ensure that memory objects are placed within specific DRAM subarrays, we propose a new lazy data allocation routine (in the kernel) for PUD memory objects called PUMA. The key idea of PUMA is to use the internal DRAM mapping information together with huge pages and then split huge pages into finer-grained allocation units that are (i) aligned to the page address and size and (ii) virtually contiguous. We implement PUMA as a kernel module using QEMU and emulate a RISC-V machine running Fedora 33 with v5.9.0 Linux Kernel. We emulate the implementation of a PUD system capable of executing row copy operations (as in RowClone) and Boolean AND/OR/NOT operations (as in Ambit). In our experiments, such an operation is performed in the host CPU if a given operation cannot be executed in our PUD substrate (due to data misalignment). PUMA significantly outperforms the baseline memory allocators for all evaluated microbenchmarks and allocation sizes

    In vivo and in vitro heat shock proteins gene expression in cattle.

    Get PDF
    The main purpose for this study was the quantification of the heat shock proteins HSPA1A and HSP90AA1, in cow lymphocytes, when subjected to heat stress directly - in vivo, or indirectly - in vitro. The aim was to identify differences between HSP expression in vitro and in vivo. The experiment was conducted in the Biometeorology and Ethology Laboratory of FZEA-USP. Were used three female Holstein Frisian, which were subjected to heat stress, by sun exposure. The blood samples were collected after sun exposure, with a temperature of 40 ± 2 º C, during three days. For in vitro tests, blood of the same animals was collected and placed for a period of 4 hours in a water bath at 40 º C, thus simulating the thermal stress. Total RNA of lymphocytes was extracted, treated with DNase I and submitted to cDNA synthesis for gene expression quantification of HSPA1A and HSP90AA1, by real time PCR (qRT-PCR). The data were tested for normality by Kolmogorov-Smirnov test and for homocedasticity by Levene test. Data were analyzed according to a general linear model procedure with 2 fixed factors treatment and genes expression. Significantly different means were submitted to post-hoc comparisons of means (LSD test) and regarded as significantly different when P<0.05. The results showed that there are no significant differences between the in vitro and the in vivo treatments

    Chronic daily headache: concepts and treatments

    Get PDF
    Chronic Daily Headache Associated to Analgesic Abuse is found in 3% of general population, and it is a not unusual cause of medical consultation. The International Headache Society Classification does not have a complete approach about this entity and the therapeutic modalities are not unanimous in the international literature at the present time. The objective of this article is to be helpful to the generalist formation of medical students and residents, reviewing the concepts and the therapeutic actualization about this entity. The text begins with the pathology definition, and gives a general view about the historical aspects, pathophysiology, clinical findings and diagnoses criteria, with a special attention to the treatment.Cefaléia Crônica Diária Associada ao Abuso de Analgésicos apresenta uma prevalência de cerca de 3% na população geral, sendo uma causa não rara de busca por auxílio médico. A Classificação da Sociedade Internacional de Cefaléias não apresenta uma abordagem completa dessa entidade e as modalidades terapêuticas ainda não são totalmente unânimes na literatura internacional. O presente artigo tem, como objetivo, a revisão de conceitos e a atualização terapêutica dessa modalidade nosológica, visando especialmente auxiliar na formação generalista de alunos da graduação e médicos residentes. Para tanto, o texto inicia-se com uma definição da patologia e aborda ainda sua epidemiologia, aspectos históricos, fisiopatologia, quadro clínico e critérios diagnósticos, com especial ênfase ao tratamento

    Accelerating Neural Network Inference with Processing-in-DRAM: From the Edge to the Cloud

    Full text link
    Neural networks (NNs) are growing in importance and complexity. A neural network's performance (and energy efficiency) can be bound either by computation or memory resources. The processing-in-memory (PIM) paradigm, where computation is placed near or within memory arrays, is a viable solution to accelerate memory-bound NNs. However, PIM architectures vary in form, where different PIM approaches lead to different trade-offs. Our goal is to analyze, discuss, and contrast DRAM-based PIM architectures for NN performance and energy efficiency. To do so, we analyze three state-of-the-art PIM architectures: (1) UPMEM, which integrates processors and DRAM arrays into a single 2D chip; (2) Mensa, a 3D-stack-based PIM architecture tailored for edge devices; and (3) SIMDRAM, which uses the analog principles of DRAM to execute bit-serial operations. Our analysis reveals that PIM greatly benefits memory-bound NNs: (1) UPMEM provides 23x the performance of a high-end GPU when the GPU requires memory oversubscription for a general matrix-vector multiplication kernel; (2) Mensa improves energy efficiency and throughput by 3.0x and 3.1x over the Google Edge TPU for 24 Google edge NN models; and (3) SIMDRAM outperforms a CPU/GPU by 16.7x/1.4x for three binary NNs. We conclude that the ideal PIM architecture for NN models depends on a model's distinct attributes, due to the inherent architectural design choices.Comment: This is an extended and updated version of a paper published in IEEE Micro, pp. 1-14, 29 Aug. 2022. arXiv admin note: text overlap with arXiv:2109.1432

    TransPimLib: A Library for Efficient Transcendental Functions on Processing-in-Memory Systems

    Full text link
    Processing-in-memory (PIM) promises to alleviate the data movement bottleneck in modern computing systems. However, current real-world PIM systems have the inherent disadvantage that their hardware is more constrained than in conventional processors (CPU, GPU), due to the difficulty and cost of building processing elements near or inside the memory. As a result, general-purpose PIM architectures support fairly limited instruction sets and struggle to execute complex operations such as transcendental functions and other hard-to-calculate operations (e.g., square root). These operations are particularly important for some modern workloads, e.g., activation functions in machine learning applications. In order to provide support for transcendental (and other hard-to-calculate) functions in general-purpose PIM systems, we present \emph{TransPimLib}, a library that provides CORDIC-based and LUT-based methods for trigonometric functions, hyperbolic functions, exponentiation, logarithm, square root, etc. We develop an implementation of TransPimLib for the UPMEM PIM architecture and perform a thorough evaluation of TransPimLib's methods in terms of performance and accuracy, using microbenchmarks and three full workloads (Blackscholes, Sigmoid, Softmax). We open-source all our code and datasets at~\url{https://github.com/CMU-SAFARI/transpimlib}.Comment: Our open-source software is available at https://github.com/CMU-SAFARI/transpimli

    Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture

    Full text link
    Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a significant overhead in terms of both latency and energy. A major reason is that this communication happens through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data movement bottleneck requires a paradigm where the memory system assumes an active role in computing by integrating processing capabilities. This paradigm is known as processing-in-memory (PIM). Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-stacked memory technologies that integrate memory with a logic layer where processing elements can be easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available real-world PIM architecture. This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architecture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based PIM system using microbenchmarks to assess various architecture limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present PrIM, a benchmark suite of 16 workloads from different application domains (e.g., linear algebra, databases, graph processing, neural networks, bioinformatics).Comment: Our open source software is available at https://github.com/CMU-SAFARI/prim-benchmark

    DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

    Full text link
    Data movement between the CPU and main memory is a first-order obstacle against improving performance, scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP), where some computation is moved close to memory. Our goal is to methodically identify potential sources of data movement over a broad set of applications and to comprehensively compare traditional compute-centric data movement mitigation techniques to more memory-centric techniques, thereby developing a rigorous understanding of the best techniques to mitigate each source of data movement. With this goal in mind, we perform the first large-scale characterization of a wide variety of applications, across a wide range of application domains, to identify fundamental program properties that lead to data movement to/from main memory. We develop the first systematic methodology to classify applications based on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K functions across 345 applications, we select 144 functions to form the first open-source benchmark suite (DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and (2) come from a wide range of application domains. Using NDP as a case study, we identify new insights about the different data movement bottlenecks and use these insights to determine the most suitable data movement mitigation mechanism for a particular application. We open-source DAMOV and the complete source code for our new characterization methodology at https://github.com/CMU-SAFARI/DAMOV.Comment: Our open source software is available at https://github.com/CMU-SAFARI/DAMO

    An Experimental Evaluation of Machine Learning Training on a Real Processing-in-Memory System

    Full text link
    Training machine learning (ML) algorithms is a computationally intensive process, which is frequently memory-bound due to repeatedly accessing large training datasets. As a result, processor-centric systems (e.g., CPU, GPU) suffer from costly data movement between memory units and processing units, which consumes large amounts of energy and execution cycles. Memory-centric computing systems, i.e., with processing-in-memory (PIM) capabilities, can alleviate this data movement bottleneck. Our goal is to understand the potential of modern general-purpose PIM architectures to accelerate ML training. To do so, we (1) implement several representative classic ML algorithms (namely, linear regression, logistic regression, decision tree, K-Means clustering) on a real-world general-purpose PIM architecture, (2) rigorously evaluate and characterize them in terms of accuracy, performance and scaling, and (3) compare to their counterpart implementations on CPU and GPU. Our evaluation on a real memory-centric computing system with more than 2500 PIM cores shows that general-purpose PIM architectures can greatly accelerate memory-bound ML workloads, when the necessary operations and datatypes are natively supported by PIM hardware. For example, our PIM implementation of decision tree is 27×27\times faster than a state-of-the-art CPU version on an 8-core Intel Xeon, and 1.34×1.34\times faster than a state-of-the-art GPU version on an NVIDIA A100. Our K-Means clustering on PIM is 2.8×2.8\times and 3.2×3.2\times than state-of-the-art CPU and GPU versions, respectively. To our knowledge, our work is the first one to evaluate ML training on a real-world PIM architecture. We conclude with key observations, takeaways, and recommendations that can inspire users of ML workloads, programmers of PIM architectures, and hardware designers & architects of future memory-centric computing systems
    corecore