17 research outputs found
Solid Solutions of Lindbergite–Glushinskite Series: Synthesis, Ionic Substitutions, Phase Transformation and Crystal Morphology
To clarify the crystal chemical features of natural and synthetic oxalates Me2+(C2O4)∙2H2O (Me2+ = Fe, Mn, Mg, Zn), including minerals of the humboldtine group, solid solutions of lindbergite Mn(C2O4)∙2H2O–glushinskite Mg(C2O4)∙2H2O were precipitated under various conditions, close to those characteristic of mineralization in biofilms: at the stoichiometric ratios ((Mn + Mg)/C2O4 = 1) and non-stochiometric ratios ((Mn + Mg)/C2O4 Fddd), while lindbergite has a monoclinic α-modification (sp. gr. C2/c). Mg ions incorporate lindbergite in much higher quantities than Mn ions incorporate glushinskite; moreover, Mn glushinskites are characterized by violations of long-range order in their crystal structure. Lindbergite–glushinskite transition occurs abruptly and can be classified as a first-order isodimorphic transition. The Me2+/C2O4 ratio and the presence of citric acid in the solution affect the isomorphic capacity of lindbergite and glushinskite, the width of the transition and the equilibrium Mg/Mn ratio. The transition is accompanied by continuous morphological changes in crystals and crystal intergrowths. Given the obtained results, it is necessary to take into account in biotechnologies aimed at the bioremediation/bioleaching of metals from media containing mixtures of cations (Mg, Mn, Fe, Zn)
Synthesis and Characterization of (Ca,Sr)[C2O4]∙nH2O Solid Solutions: Variations of Phase Composition, Crystal Morphologies and in Ionic Substitutions
To study strontium (Sr) incorporation into calcium oxalates (weddellite and whewellite), calcium-strontium oxalate solid solutions (Ca,Sr)[C2O4]∙nH2O (n = 1, 2) are synthesized and studied by a complex of methods: powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Two series of solid solutions, isomorphous (Ca,Sr)[C2O4]·(2.5 − x)H2O) (space group I4/m) and isodimorphous Ca[C2O4]·H2O(sp.gr. P21/c)–Sr[C2O4]·H2O(sp.gr. P 1 - ), are experimentally detected. The morphogenetic regularities of their crystallization are revealed. The factors controlling this process are discussed
Iron Oxalate Humboldtine Crystallization by Fungus Aspergillus niger
Microfungi were able to alternate solid substrate in various environments and play a noticeable role in the formation of insoluble calcium oxalate crystals in subaerial biofilms on rock surfaces. The present work describes how iron oxalate dihydrate humboldtine is acquired under the influence of the acid-producing microscopic fungus Aspergillus niger on the surface of two iron- bearing mineral substrates in vitro. Pyrrhotite and siderite rocks, as well as the products of their alteration, were investigated using a complex of analytical methods, including powder X-ray diffraction, optical microscopy, scanning electron microscopy and EDX spectroscopy. The effect of the underlying rocks with different composition and solubility and different oxidation states of iron on Fe-oxalate crystallization and on the morphology of humboldtine crystals was shown. The mechanisms of humboldtine formation were discussed. The results obtained in vitro seem promising for using fungi in bioleaching iron and other metals from processed ores and for the development of environmentally friendly biotechnologies
Iron Oxalate Humboldtine Crystallization by Fungus <i>Aspergillus niger</i>
Microfungi were able to alternate solid substrate in various environments and play a noticeable role in the formation of insoluble calcium oxalate crystals in subaerial biofilms on rock surfaces. The present work describes how iron oxalate dihydrate humboldtine is acquired under the influence of the acid-producing microscopic fungus Aspergillus niger on the surface of two iron- bearing mineral substrates in vitro. Pyrrhotite and siderite rocks, as well as the products of their alteration, were investigated using a complex of analytical methods, including powder X-ray diffraction, optical microscopy, scanning electron microscopy and EDX spectroscopy. The effect of the underlying rocks with different composition and solubility and different oxidation states of iron on Fe-oxalate crystallization and on the morphology of humboldtine crystals was shown. The mechanisms of humboldtine formation were discussed. The results obtained in vitro seem promising for using fungi in bioleaching iron and other metals from processed ores and for the development of environmentally friendly biotechnologies
Decaying of the marble and limestone monuments in the urban environment. Case studies from Saint Petersburg, Russia
The results of a long-lasting research of sulphation process, which causes an essential deterioration of marble and limestone monuments in Saint Petersburg are reported. Based on a variety of field and analytical methods we can show that the decay process forming a gypsum-rich patina depends mainly on the local environment, the moisture accumulation, and is connected with the fissuring and porosity of the rock and the relief of a monument. Three main stages of gypsum-rich patina formation in the presence of microorganisms were revealed
Bacterial Effect on the Crystallization of Mineral Phases in a Solution Simulating Human Urine
The effect of bacteria that present in the human urine (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus) was studied under the conditions of biomimetic synthesis. It was shown that the addition of bacteria significantly affects both the phase composition of the synthesized material and the position of crystallization boundaries of the resulting phosphate phases, which can shift toward more acidic (struvite, apatite) or toward more alkaline (brushite) conditions. Under conditions of oxalate mineralization, bacteria accelerate the nucleation of calcium oxalates by almost two times and also increase the amount of oxalate precipitates along with phosphates and stabilize the calcium oxalate dihydrate (weddellite). The multidirectional changes in the pH values of the solutions, which are the result of the interaction of all system components and the crystallization process, were analyzed. The obtained results are the scientific basis for understanding the mechanisms of bacterial involvement in stone formation within the human body and the creation of biotechnological methods that inhibit this process