127 research outputs found
Tuberculosis associated thrombocytopenic purpura: effectiveness of antituberculous therapy
Association of immune thrombocytopenic purpura and tuberculosis is a rare condition. In 5 patients presenting with this association, anti-tuberculous therapy was effective on both tuberculosis and thrombocytopenia suggesting a causal relationship between tuberculosis and immune thrombocytopenic purpur
Human herpes virus 8 replication during disseminated tuberculosis in a man with human immunodeficiency virus: a case report
INTRODUCTION: Human herpes virus 8 (HHV-8) is mainly responsible for the development of Kaposi's sarcoma and multicentric Castleman's disease in immunocompromised patients with untreated human immunodeficiency virus. Positive viral loads have been described in cases of Kaposi's sarcoma and multicentric Castleman's disease, with higher values found in the latter. We describe the case of a patient with HIV in whom a high level of HHV-8 replication was detected and who contracted an opportunistic disease other than multicentric Castleman's disease or Kaposi's sarcoma. CASE PRESENTATION: A 25-year-old man of West African origin with HIV complained of asthenia, weight loss, fever, and abdominal pain. Physical examination revealed that the patient had adenopathies and hepatosplenomegaly, but no skin or mucosal lesions were seen. Our first presumptive diagnosis was disseminated tuberculosis. However, since the cultures (sputum, bronchoalveolar lavage, blood, urine and lymph node biopsies) for mycobacteria were negative, the diagnosis was expanded to include multicentric Castleman's disease which was supported by high HHV-8 viral loads in the patient's blood: 196,000 copies/ml in whole blood, 39,400 copies/ml in plasma and 260 copies/10E5 in peripheral blood mononuclear cells. However, the histology and positive polymerase chain reaction assay for Mycobacterium tuberculosis complex of a second lymph node biopsy enabled us to conclude that the patient had disseminated tuberculosis and we started the patient on antituberculosis treatment. We analyzed the HHV-8 deoxyribonucleic acid in two other plasma samples (one from six months earlier and the other was 10 days after the positive test) and both yielded negative results. A search for latent and lytic HHV-8 antibodies confirmed that the patient was seropositive for HHV-8 before this episode. CONCLUSION: We describe the case of a patient with HIV who tested positive for asymptomatic HHV-8 replication during an opportunistic disease suggestive of multicentric Castleman's disease. The initial analysis was nullified by the diagnosis of a disease that was unrelated to HHV-8. This case report underlines the need to clarify the full clinical meaning and implication of a positive HHV-8 viral load in patients with AIDS. The diagnosis of multicentric Castleman's disease needs to be studied further to determine its sensitivity and specificity. Finally, when faced with the dilemma of urgently starting chemotherapy on a patient whose condition is deteriorating and whose clinical presentation suggests multicentric Castleman's disease, high HHV-8 viral loads should be interpreted with caution and histological analysis of lymph nodes or liver biopsies should be obtained first
Recommended from our members
Human Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee.
We report the updated classification of Inborn Errors of Immunity/Primary Immunodeficiencies, compiled by the International Union of Immunological Societies Expert Committee. This report documents the key clinical and laboratory features of 430 inborn errors of immunity, including 64 gene defects that have either been discovered in the past 2 years since the previous update (published January 2018) or were characterized earlier but have since been confirmed or expanded upon in subsequent studies. The application of next-generation sequencing continues to expedite the rapid identification of novel gene defects, rare or common; broaden the immunological and clinical phenotypes of conditions arising from known gene defects and even known variants; and implement gene-specific therapies. These advances are contributing to greater understanding of the molecular, cellular, and immunological mechanisms of disease, thereby enhancing immunological knowledge while improving the management of patients and their families. This report serves as a valuable resource for the molecular diagnosis of individuals with heritable immunological disorders and also for the scientific dissection of cellular and molecular mechanisms underlying inborn errors of immunity and related human diseases
Recommended from our members
Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical Classification.
Since 2013, the International Union of Immunological Societies (IUIS) expert committee (EC) on Inborn Errors of Immunity (IEI) has published an updated phenotypic classification of IEI, which accompanies and complements their genotypic classification into ten tables. This phenotypic classification is user-friendly and serves as a resource for clinicians at the bedside. There are now 430 single-gene IEI underlying phenotypes as diverse as infection, malignancy, allergy, autoimmunity, and autoinflammation. We herein report the 2019 phenotypic classification, including the 65 new conditions. The diagnostic algorithms are based on clinical and laboratory phenotypes for each of the ten broad categories of IEI
Recommended from our members
The Ever-Increasing Array of Novel Inborn Errors of Immunity : an Interim Update by the IUIS Committee
The most recent updated classification of inborn errors of immunity/primary immunodeficiencies, compiled by the International Union of Immunological Societies Expert Committee, was published in January 2020. Within days of completing this report, it was already out of date, evidenced by the frequent publication of genetic variants proposed to cause novel inborn errors of immunity. As the next formal report from the IUIS Expert Committee will not be published until 2022, we felt it important to provide the community with a brief update of recent contributions to the field of inborn errors of immunity. Herein, we highlight studies that have identified 26 additional monogenic gene defects that reach the threshold to represent novel causes of immune defects.Peer reviewe
Human Inborn Errors of Immunity : 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee
We report the updated classification of inborn errors of immunity, compiled by the International Union of Immunological Societies Expert Committee. This report documents the key clinical and laboratory features of 55 novel monogenic gene defects, and 1 phenocopy due to autoantibodies, that have either been discovered since the previous update (published January 2020) or were characterized earlier but have since been confirmed or expanded in subsequent studies. While variants in additional genes associated with immune diseases have been reported in the literature, this update includes only those that the committee assessed that reached the necessary threshold to represent novel inborn errors of immunity. There are now a total of 485 inborn errors of immunity. These advances in discovering the genetic causes of human immune diseases continue to significantly further our understanding of molecular, cellular, and immunological mechanisms of disease pathogenesis, thereby simultaneously enhancing immunological knowledge and improving patient diagnosis and management. This report is designed to serve as a resource for immunologists and geneticists pursuing the molecular diagnosis of individuals with heritable immunological disorders and for the scientific dissection of cellular and molecular mechanisms underlying monogenic and related human immune diseases.Peer reviewe
Activated phosphoinositide 3-kinase δ syndrome: Update from the ESID Registry and comparison with other autoimmune-lymphoproliferative inborn errors of immunity
Background: Activated phosphoinositide-3-kinase d syndrome (APDS) is an inborn error of immunity (IEI) with infection susceptibility and immune dysregulation, clinically overlapping with other conditions. Management depends on disease evolution, but predictors of severe disease are lacking. Objectives: This study sought to report the extended spectrum of disease manifestations in APDS1 versus APDS2; compare these to CTLA4 deficiency, NFKB1 deficiency, and STAT3 gain of-function (GOF) disease; and identify predictors of severity in APDS. Methods: Data was collected from the ESID (European Society for Immunodeficiencies)-APDS registry and was compared with published cohorts of the other IEIs. Results: The analysis of 170 patients with APDS outlines high penetrance and early onset of APDS compared to the other IEIs. The large clinical heterogeneity even in individuals with the same PIK3CD variant E1021K illustrates how poorly the genotype predicts the disease phenotype and course. The high clinical overlap between APDS and the other investigated IEIs suggests relevant pathophysiological convergence of the affected pathways. Preferentially affected organ systems indicate specific pathophysiology: bronchiectasis is typical of APDS1; interstitial lung disease and enteropathy are more common in STAT3 GOF and CTLA4 deficiency. Endocrinopathies are most frequent in STAT3 GOF, but growth impairment is also common, particularly in APDS2. Early clinical presentation is a risk factor for severe disease in APDS. Conclusions: APDS illustrates how a single genetic variant can result in a diverse autoimmune-lymphoproliferative phenotype. Overlap with other IEIs is substantial. Some specific features distinguish APDS1 from APDS2. Early onset is a risk factor for severe disease course calling for specific treatment studies in younger patients. (J Allergy Clin Immunol 2023;152:984-96.
The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies
Since the 1990s, the International Union of Immunological Societies (IUIS) PID expert committee (EC), now called Inborn Errors of Immunity Committee, has published every other year a classification of the inborn errors of immunity. This complete catalog serves as a reference for immunologists and researchers worldwide. However, it was unadapted for clinicians at the bedside. For those, the IUIS PID EC is now publishing a phenotypical classification since 2013, which proved to be more user-friendly. There are now 320 single-gene inborn errors of immunity underlying phenotypes as diverse as infection, malignancy, allergy, auto-immunity, and auto-inflammation. We herein propose the revised 2017 phenotypic classification, based on the accompanying 2017 IUIS Inborn Errors of Immunity Committee classification
- …