12 research outputs found

    Saving Death: Apoptosis for Intervention in Transplantation and Autoimmunity

    Get PDF
    Long considered immunologically “bland,” apoptotic cells are now recognized as important modulators of immune responses. The role of apoptosis in immunological homeostasis has been inferred from several findings, for example, induction of tolerance after injection of apoptotic cells and the capacity of APCs like macrophages and DCs to induce and maintain tolerance after phagocytosis of dead cells. Processing of apoptotic cells by DCs is of particular interest, because DCs are the only known APCs capable of activating naïve T lymphocytes to become effector or regulatory cells. In that regard, recent evidence suggests that phagocytosis of apoptotic cells by DCs can induce Tregs, a finding that has significant implications for the treatment of a variety of immune-mediated inflammatory disorders. Here, we review the relationship between apoptotic cells, DCs, and Tregs, and its impact on prevention of transplant rejection and treatment of autoimmune diseases

    Pancreaticoduodenectomy in a patient with previous left ventricular assist device: a case report with specific emphasis on peri-operative logistics.

    Get PDF
    To the best of our knowledge this is the first case of this nature described in the literature. Sharing the authors experience with this case, particularly the technical challenges and post-operative management may aid other physicians facing similar scenarios. In this report, we describe a pancreaticoduodenectomy for pancreatic adenocarcinoma in a patient with a previous left ventricular assist device (LVAD). A multidisciplinary approach, particularly close involvement of the advanced heart failure, mechanical heart and pancreas surgery teams was key to the success of this case. Major abdominal surgery in the setting of previous LVAD should be considered carefully, however, the LVAD should not be generalized as an absolute contraindication

    Morbidity of 200 Consecutive Cases of Hand-Assisted Laparoscopic Living Donor Nephrectomies: A Single-Center Experience

    Get PDF
    Background. Recipients of laparoscopically procured kidneys have been reported to have delayed graft function, a slower creatinine nadir, and potential significant complications. As the technique has evolved laparoscopic donor nephrectomy technique is becoming the gold standard for living donation. Study Design. We retrospectively reviewed the data of the first 200 hand-assisted laparoscopic living donor nephrectomies performed between January 2003 and February 2009. The initial 41 donors and their recipients (Group 1) were compared to the next 159 donors and their recipients (Group 2). The estimated blood loss, serum creatinine at discharge and 6 months, and the incidence of delayed graft function and perioperative complications were analyzed. Results. The median donor serum creatinine at discharge and 6 months was 1.2 mg/dL in each group. None of the laparoscopic procedures required conversion to an open procedure, and none of the donors required perioperative blood transfusion. The median recipient serum creatinine at 6 months after transplant was 1.2 mg/dL for each group. No ischemic ureteral complications related to the laparoscopic technique were seen. Conclusions. HALDN with meticulous surgical technique allows kidney procurement with very low morbidity and no mortality. This improved safety and decreased invasiveness from laparoscopic approach may further decrease morbidity of the procedure and increase organ donation

    Bioluminescent Mammalian Cells Grown in Sponge Matrices to Monitor Immune Rejection

    No full text
    The growth and bioluminescence of cells seeded in collagen and gelatin sponge matrices were compared in vitro under different conditions, and immune rejection was quantified and visualized directly in situ based on loss of bioluminescence activity. Mammalian cells expressing a Renilla luciferase complementary deoxyribonucleic acid (cDNA) were used to seed collagen and gelatin sponge matrices soaked in either polylysine or gelatin to determine optimal growth conditions in vitro. The sponges were incubated in tissue culture plates for 3 weeks and received 2, 9, or 15 injections of coelenterazine. Measurements of bioluminescence activity indicated that gelatin sponges soaked in gelatin emitted the highest levels of light emission, multiple injections of coelenterazine did not affect light emission significantly, and light emission from live cells grown in sponges could be measured qualitatively but not quantitatively. Histologic analysis of sponge matrices cultured in vitro showed that cells grew best in gelatin matrices. Visualization of subcutaneously implanted sponges in mice showed accelerated loss of light emission in immunocompetent BALB/c mice compared with immunodeficient BALB/c- scid mice, which was associated with increased cell infiltration. Our results indicate that sponge matrices carrying bioluminescent mammalian cells are a valid model system to study immune rejection in situ

    Bioluminescent Mammalian Cells Grown in Sponge Matrices to Monitor Immune Rejection

    No full text
    The growth and bioluminescence of cells seeded in collagen and gelatin sponge matrices were compared in vitro under different conditions, and immune rejection was quantified and visualized directly in situ based on loss of bioluminescence activity. Mammalian cells expressing a Renilla luciferase complementary deoxyribonucleic acid (cDNA) were used to seed collagen and gelatin sponge matrices soaked in either polylysine or gelatin to determine optimal growth conditions in vitro. The sponges were incubated in tissue culture plates for 3 weeks and received 2, 9, or 15 injections of coelenterazine. Measurements of bioluminescence activity indicated that gelatin sponges soaked in gelatin emitted the highest levels of light emission, multiple injections of coelenterazine did not affect light emission significantly, and light emission from live cells grown in sponges could be measured qualitatively but not quantitatively. Histologic analysis of sponge matrices cultured in vitro showed that cells grew best in gelatin matrices. Visualization of subcutaneously implanted sponges in mice showed accelerated loss of light emission in immunocompetent BALB/c mice compared with immunodeficient BALB/c- scid mice, which was associated with increased cell infiltration. Our results indicate that sponge matrices carrying bioluminescent mammalian cells are a valid model system to study immune rejection in situ
    corecore