4 research outputs found

    Skeletal FGFR1 signaling is necessary for regulation of serum phosphate level by FGF23 and normal life span

    Get PDF
    Fibroblast growth factor (FGF) 23 produced by the bone is the principal hormone to regulate serum phosphate level. Serum FGF23 needs to be tightly regulated to maintain serum phosphate in a narrow range. Thus, we hypothesized that the bone has some phosphate-sensing mechanism to regulate the production of FGF23. Previously we showed that extracellular phosphate induces the phosphorylation of FGF receptor 1 (FGFR1) and FGFR1 signaling regulates the expression of Galnt3, whose product works to increase FGF23 production in vitro. In this study, we show the significance of FGFR1 in the regulated FGF23 production and serum phosphate level in vivo. We generated late-osteoblast/osteocyte-specific Fgfr1-knockout mice (Fgfr1fl/fl; OcnCre/+) by crossing the Ocn-Cre and the floxed Fgfr1 mouse lines. We evaluated serum phosphate and FGF23 levels, the expression of Galnt3 in the bone, the body weight and life span. A selective ablation of Fgfr1 aborted the increase of serum active full-length FGF23 and the enhanced expression of Galnt3 in the bone by a high phosphate diet. These mice showed more pronounced hyperphosphatemia compared with control mice. In addition, these mice fed with a control diet showed body weight loss after 23 weeks of age and shorter life span. These results reveal a novel significance of FGFR1 signaling in the phosphate metabolism and normal life span

    Treatment algorithm of ACTH deficiency

    Get PDF
    Objective : To examine diagnostic performance of corticotropin-releasing hormone (CRH) test combined with baseline dehydroepiandrosterone sulfate (DHEA-S) in patients with a suspect of central adrenal insufficiency. Methods : Patients (n=215) requiring daily or intermittent hydrocortisone replacement, or no replacement were retrospectively checked with their peak cortisol after CRH test and baseline DHEA-S. Results : None of 106 patients with the peak cortisol ≥ 17.5 μg / dL after CRH test required replacement, and all 64 patients with the peak cortisol < 10.0 μg / dL required daily replacement. Among 8 patients with 10.0 μg / dL ≤ the peak cortisol < 17.5 μg / dL and baseline DHEA-S below the reference range, 6 patients required daily replacement and 1 patient was under intermittent replacement. Among 37 patients with 10.0 μg / dL ≤ the peak cortisol < 17.5 μg / dL and baseline DHEA-S within the reference range, 10 and 6 patients were under intermittent and daily replacement, respectively. Conclusions : No patients with the peak cortisol ≥ 17.5 μg / dL required hydrocortisone replacement, and all patients with the peak cortisol below 10.0 μg / dL required daily replacement. Careful clinical evaluation was required to determine requirement for replacement in patients with 10.0 μg / dL ≤ the peak cortisol < 17.5 μg / dL even in combination with baseline DHEA-S
    corecore