540 research outputs found

    A new technique using a rubber balloon in emergency second trimester cerclage for fetal membrane prolapse

    Get PDF
    The definitive version is available at www.blackwell-synergy.comArticleJOURNAL OF OBSTETRICS AND GYNAECOLOGY RESEARCH. 34(6):935-940 (2008)journal articl

    Fermi-Surface Reconstruction in the Periodic Anderson Model

    Full text link
    We study ground state properties of periodic Anderson model in a two-dimensional square lattice with variational Monte Carlo method. It is shown that there are two different types of quantum phase transition: a conventional antiferromagnetic transition and a Fermi-surface reconstruction which accompanies a change of topology of the Fermi surface. The former is induced by a simple back-folding of the Fermi surface while the latter is induced by localization of ff electrons. The mechanism of these transitions and the relation to the recent experiments on Fermi surface are discussed in detail.Comment: 8 pages, 7 figures, submitted to Journal of the Physical Society of Japa

    Large Scale Cross-Correlations in Internet Traffic

    Full text link
    The Internet is a complex network of interconnected routers and the existence of collective behavior such as congestion suggests that the correlations between different connections play a crucial role. It is thus critical to measure and quantify these correlations. We use methods of random matrix theory (RMT) to analyze the cross-correlation matrix C of information flow changes of 650 connections between 26 routers of the French scientific network `Renater'. We find that C has the universal properties of the Gaussian orthogonal ensemble of random matrices: The distribution of eigenvalues--up to a rescaling which exhibits a typical correlation time of the order 10 minutes--and the spacing distribution follow the predictions of RMT. There are some deviations for large eigenvalues which contain network-specific information and which identify genuine correlations between connections. The study of the most correlated connections reveals the existence of `active centers' which are exchanging information with a large number of routers thereby inducing correlations between the corresponding connections. These strong correlations could be a reason for the observed self-similarity in the WWW traffic.Comment: 7 pages, 6 figures, final versio

    Finite-size and correlation-induced effects in Mean-field Dynamics

    Full text link
    The brain's activity is characterized by the interaction of a very large number of neurons that are strongly affected by noise. However, signals often arise at macroscopic scales integrating the effect of many neurons into a reliable pattern of activity. In order to study such large neuronal assemblies, one is often led to derive mean-field limits summarizing the effect of the interaction of a large number of neurons into an effective signal. Classical mean-field approaches consider the evolution of a deterministic variable, the mean activity, thus neglecting the stochastic nature of neural behavior. In this article, we build upon two recent approaches that include correlations and higher order moments in mean-field equations, and study how these stochastic effects influence the solutions of the mean-field equations, both in the limit of an infinite number of neurons and for large yet finite networks. We introduce a new model, the infinite model, which arises from both equations by a rescaling of the variables and, which is invertible for finite-size networks, and hence, provides equivalent equations to those previously derived models. The study of this model allows us to understand qualitative behavior of such large-scale networks. We show that, though the solutions of the deterministic mean-field equation constitute uncorrelated solutions of the new mean-field equations, the stability properties of limit cycles are modified by the presence of correlations, and additional non-trivial behaviors including periodic orbits appear when there were none in the mean field. The origin of all these behaviors is then explored in finite-size networks where interesting mesoscopic scale effects appear. This study leads us to show that the infinite-size system appears as a singular limit of the network equations, and for any finite network, the system will differ from the infinite system

    The quantum critical point in CeRhIn_5: a resistivity study

    Full text link
    The pressure--temperature phase diagram of CeRhIn_5 has been studied under high magnetic field by resistivity measurements. Clear signatures of a quantum critical point has been found at a critical pressure of p_c = 2.5 GPa. The field induced magnetic state in the superconducting state is stable up to the highest field. At p_c the antiferromagnetic ground-state under high magnetic field collapses very rapidly. Clear signatures of p_c are the strong enhancement of the resistivity in the normal state and of the inelastic scattering term. No clear T2 temperature dependence could be found for pressures above T_c. From the analysis of the upper critical field within a strong coupling model we present the pressure dependence of the coupling parameter lambda and the gyromagnetic ratio g. No signatures of a spatially modulated order parameter could be evidenced. A detailed comparison with the magnetic field--temperature phase diagram of CeCoIn_5 is given. The comparison between CeRhIn_5 and CeCoIn_5 points out the importance to take into account the field dependence of the effective mass in the calculation of the superconducting upper critical field H_c2. It suggests also that when the magnetic critical field H_(0) becomes lower than H_c2 (0)$, the persistence of a superconducting pseudo-gap may stick the antiferromagnetism to H_c2 (0).Comment: 15 pages, 20 figures, to be published in J. Phys. Soc. Jp
    • 

    corecore