28,620 research outputs found
Energy levels of the soliton--heavy-meson bound states
We investigate the bound states of heavy mesons with finite masses to a
classical soliton solution in the Skyrme model. For a given model Lagrangian we
solve the equations of motion exactly so that the heavy vector mesons are
treated on the same footing as the heavy pseudoscalar mesons. All the energy
levels of higher grand spin states as well as the ground state are given over a
wide range of the heavy meson masses. We also examine the validity of the
approximations used in the literatures. The recoil effect of finite mass
soliton is naively estimated.Comment: 24 pages, REVTeX v3.0, 6 figures are available upon request
Higher Derivative CP(N) Model and Quantization of the Induced Chern-Simons Term
We consider higher derivative CP(N) model in 2+1 dimensions with the
Wess-Zumino-Witten term and the topological current density squared term. We
quantize the theory by using the auxiliary gauge field formulation in the path
integral method and prove that the extended model remains renormalizable in the
large N limit. We find that the Maxwell-Chern-Simons theory is dynamically
induced in the large N effective action at a nontrivial UV fixed point. The
quantization of the Chern-Simons term is also discussed.Comment: 8 pages, no figure, a minor change in abstract, added Comments on the
quantization of the Chern-Simons term whose coefficient is also corrected,
and some references are added. Some typos are corrected. Added a new
paragraph checking the equivalence between (3) and (5), and a related
referenc
Synchronization transition of heterogeneously coupled oscillators on scale-free networks
We investigate the synchronization transition of the modified Kuramoto model
where the oscillators form a scale-free network with degree exponent .
An oscillator of degree is coupled to its neighboring oscillators with
asymmetric and degree-dependent coupling in the form of \couplingcoeff
k_i^{\eta-1}. By invoking the mean-field approach, we determine the
synchronization transition point , which is zero (finite) when (). We find eight different synchronization
transition behaviors depending on the values of and , and
derive the critical exponents associated with the order parameter and the
finite-size scaling in each case. The synchronization transition is also
studied from the perspective of cluster formation of synchronized vertices. The
cluster-size distribution and the largest cluster size as a function of the
system size are derived for each case using the generating function technique.
Our analytic results are confirmed by numerical simulations.Comment: 11 pages, 3 figures and two table
Hyperons analogous to the \Lambda(1405)
The low mass of the hyperon with , which is
higher than the ground state mass by 290 MeV, is difficult to
understand in quark models. We analyze the hyperon spectrum in the bound state
approach of the Skyrme model that successfully describes both the
and the . This model predicts that several
hyperon resonances of the same spin but with opposite parity form parity
doublets that have a mass difference of around 300 MeV, which is indeed
realized in the observed hyperon spectrum. Furthermore, the existence of the
and the of is predicted by this model.
Comments on the baryons and heavy quark baryons are made as well.Comment: 4 pages, talk presented at the Fifth Asia-Pacific Conference on
Few-Body Problems in Physics 2011 (APFB2011), Aug. 22-26, 2011, Seoul, Kore
Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh-Taylor instability in a laser target
Experimental study of hydrodynamic perturbation evolution triggered by a
laser-driven shock wave breakout at the free rippled rear surface of a plastic
target is reported. At sub-megabar shock pressure, planar jets manifesting the
development of the Richtmyer-Meshkov-type instability in a non-accelerated
target are observed. As the shock pressure exceeds 1 Mbar, an oscillatory
rippled expansion wave is observed, followed by the "feedout" of the
rear-surface perturbations to the ablation front and the development of the
Rayleigh-Taylor instability, which breaks up the accelerated target.Comment: 12 pages, 4 figure
A Consistent Resolution of Possible Anomalies in B^0 --> phi K_S and B^+ --> eta' K^+ Decays
In the framework of R-parity violating (\rpv) supersymmetry, we try to find a
consistent explanation for both recently measured CP asymmetry in B^0 --> phi
K_S decay and the large branching ratio of B^{+/-} --> eta' K^{+/-} decay,
which are inconsistent with the Standard Model (SM) prediction. We also
investigate other charmless hadronic B --> PP and B --> VP decay modes whose
experimental data favor the SM: for instance, recently measured CP asymmetries
in B^0 --> eta^{prime} K_S and B^0 --> J / Psi K_S. We find that all the
observed data can be accommodated for certain values of \rpv couplings.Comment: 14 pages, 2 figures, Revtex, minor changes, to appear in Phys. Rev.
Let
- …