2,261 research outputs found

    Gate-voltage dependence of Kondo effect in a triangular quantum dot

    Full text link
    We study the conductance through a triangular triple quantum dot, which are connected to two noninteracting leads, using the numerical renormalization group (NRG). It is found that the system shows a variety of Kondo effects depending on the filling of the triangle. The SU(4) Kondo effect occurs at half-filling, and a sharp conductance dip due to a phase lapse appears in the gate-voltage dependence. Furthermore, when four electrons occupy the three sites on average, a local S=1 moment, which is caused by the Nagaoka mechanism, is induced along the triangle. The temperature dependence of the entropy and spin susceptibility of the triangle shows that this moment is screened by the conduction electrons via two separate stages at different temperatures. The two-terminal and four-terminal conductances show a clear difference at the gate voltages, where the SU(4) or the S=1 Kondo effects occurring.Comment: 4 pages, 4 figs: typos just below (4) are corrected, results are not affecte

    Transmission Coefficient as a Three-Point Retarded Function

    Full text link
    We show that the transmission probability through a small interacting region connected to noninteracting leads, can be written in terms of a retarded product of a three-point correlation function defined in the real time. Our proof is based on the Kubo formalism, and uses an Eliashberg theory for analytic properties of vertex functions. The aim of this short report is to add a new viewpoint to the transport theory described in the previous paper: A.O., J. Phys. Soc. Jpn. 70 (2001) 2666.Comment: 2 pages, 2 figures, submitted to J. Phys. Soc. Jp

    Perturbation Study of the Conductance through an Interacting Region Connected to Multi-Mode Leads

    Full text link
    We study the effects of electron correlation on transport through an interacting region connected to multi-mode leads based on the perturbation expansion with respect to the inter-electron interaction. At zero temperature the conductance defined in the Kubo formalism can be written in terms of a single-particle Green's function at the Fermi energy, and it can be mapped onto a transmission coefficient of the free quasiparticles described by an effective Hamiltonian. We apply this formulation to a two-dimensional Hubbard model of finite size connected to two noninteracting leads. We calculate the conductance in the electron-hole symmetric case using the order U2U^2 self-energy. The conductance shows several maximums in the UU dependence in some parameter regions of ty/txt_y/t_x, where txt_x (tyt_y) is the hopping matrix element in the xx- (yy-) directions. This is caused by the resonance occurring in some of the subbands, and is related with the UU dependence of the eigenvalues of the effective Hamiltonian.Comment: 17 pages, 12 figures, to be published in J.Phys.Soc.Jpn. 71(2002)No.

    Determination of the phase shifts for interacting electrons connected to reservoirs

    Full text link
    We describe a formulation to deduce the phase shifts, which determine the ground-state properties of interacting quantum-dot systems with the inversion symmetry, from the fixed-point eigenvalues of the numerical renormalization group (NRG). Our approach does not assume the specific form of the Hamiltonian nor the electron-hole symmetry, and it is applicable to a wide class of quantum impurities connected to noninteracting leads. We apply the method to a triple dot which is described by a three-site Hubbard chain connected to two noninteracting leads, and calculate the dc conductance away from half-filling. The conductance shows the typical Kondo plateaus of Unitary limit in some regions of the gate voltages, at which the total number of electrons N_el in the three dots is odd, i.e., N_el =1, 3 and 5. In contrast, the conductance shows a wide minimum in the gate voltages corresponding to even number of electrons, N_el = 2 and 4. We also discuss the parallel conductance of the triple dot connected transversely to four leads, and show that it can be deduced from the two phase shifts defined in the two-lead case.Comment: 9 pages, 12 figures: Fig. 12 has been added to discuss T_

    Transport through a finite Hubbard chain connected to reservoirs

    Full text link
    The dc conductance through a finite Hubbard chain of size N coupled to two noninteracting leads is studied at T = 0 in an electron-hole symmetric case. Assuming that the perturbation expansion in U is valid for small N (=1,2,3,...) owing to the presence of the noninteracting leads, we obtain the self-energy at \omega = 0 analytically in the real space within the second order in U. Then, we calculate the inter-site Green's function which connects the two boundaries of the chain, G_{N1}, solving the Dyson equation. The conductance can be obtained through G_{N1}, and the result shows an oscillatory behavior as a function of N. For odd N, a perfect transmission occurs independent of U. This is due to the inversion and electron-hole symmetries, and is attributed to a Kondo resonance appearing at the Fermi level. On the other hand, for even N, the conductance is a decreasing function of N and U.Comment: 11 pages, RevTeX, 6 figures, to be published in Phys. Rev. B 59 (1999

    Effects on the Non-Relativistic Dynamics of a Charged Particle Interacting with a Chern-Simons Potential

    Full text link
    The hydrogen atom in two dimensions, described by a Schr\"odinger equation with a Chern-Simons potential, is numerically solved. Both its wave functions and eigenvalues were determined for small values of the principal quantum number nn. The only possible states correspond to l=0l=0. How the result depends on the topological mass of the photon is also discussed. In the case n=1n=1, the energy of the fundamental state corresponding to different choice for the photon mass scale are found to be comprehended in the interval −3,5×10−3eV≤E≤−9,0×10−2eV-3,5 \times 10^{-3} eV \leq E \leq -9,0 \times 10^{-2} eV, corresponding to a mean radius of the electron in the range (5.637±0.005)×10−8 (5.637 \pm 0.005) \times 10^{-8}~cm ≤≤(48.87±0.03)×10−8\leq \leq (48.87 \pm 0.03) \times 10^{-8}~cm. In any case, the planar atom is found to be very weekly bounded showing some features similar to the Rydberg atoms in three dimensions with a Coulombian interaction.Comment: 6 pages, 5 figure

    The Kondo crossover in shot noise of a single quantum dot with orbital degeneracy

    Full text link
    We investigate out of equilibrium transport through an orbital Kondo system realized in a single quantum dot, described by the multiorbital impurity Anderson model. Shot noise and current are calculated up to the third order in bias voltage in the particle-hole symmetric case, using the renormalized perturbation theory. The derived expressions are asymptotically exact at low energies. The resulting Fano factor of the backscattering current FbF_b is expressed in terms of the Wilson ratio RR and the orbital degeneracy NN as Fb=1+9(N−1)(R−1)21+5(N−1)(R−1)2F_b =\frac{1 + 9(N-1)(R-1)^2}{1 + 5(N-1)(R-1)^2} at zero temperature. Then, for small Coulomb repulsions UU, we calculate the Fano factor exactly up to terms of order U5U^5, and also carry out the numerical renormalization group calculation for intermediate UU in the case of two- and four-fold degeneracy (N=2, 4N=2,\,4). As UU increases, the charge fluctuation in the dot is suppressed, and the Fano factor varies rapidly from the noninteracting value Fb=1F_b=1 to the value in the Kondo limit Fb=N+8N+4F_b=\frac{N+8}{N+4}, near the crossover region U∼πΓU\sim \pi \Gamma, with the energy scale of the hybridization Γ\Gamma.Comment: 10 pages, 4 figure

    Mixed-state aspects of an out-of-equilibrium Kondo problem in a quantum dot

    Full text link
    We reexamine basic aspects of a nonequilibrium steady state in the Kondo problem for a quantum dot under a bias voltage using a reduced density matrix, which is obtained in the Fock space by integrating out one of the two conduction channels. The integration has been carried out by discretizing the conduction channels preserving the two-fold degeneracy due to the left-going and right-going scattering states. The remaining subspace is described by a single-channel Anderson model, and the statistical weight is determined by the reduced density matrix. In the noninteracting case, it can be constructed as the mixed states that show a close similarity to the high-temperature distribution in equilibrium. Specifically, if the system has an inversion symmetry, the one-particle states in an energy window between the two chemical potentials \mu_R and \mu_L are occupied, or unoccupied, completely at random with an equal weight. The Coulomb interaction preserves these aspects, and the correlation functions can be expressed in a Lehmann-representation form using the mixed-state statistical weight.Comment: 8 pages, 3 figure
    • …
    corecore