2,892 research outputs found

    Half-metallic diluted antiferromagnetic semiconductors

    Full text link
    The possibility of half-metallic antiferromagnetism, a special case of ferrimagnetism with a compensated magnetization, in the diluted magnetic semiconductors is highlighted on the basis of the first principles electronic structure calculation. As typical examples, the electrical and magnetic properties of II-VI compound semiconductors doped with 3d transition metal ion pairs--(V, Co) and (Fe, Cr)--are discussed

    The Power of Axisymmetric Pulsar

    Full text link
    Stationary force-free magnetosphere of an axisymmetric pulsar is shown to have a separatrix inclination angle of 77.3∘^\circ. The electromagnetic field has an R−1/2R^{-1/2} singularity inside the separatrix near the light cylinder. A numerical simulation of the magnetosphere which crudely reproduces these properties is presented. The numerical results are used to estimate the power of an axisymmetric pulsar: L=(1±0.1)μ2Ω4/c3L=(1\pm 0.1)\mu^2\Omega^4/c^3. A need for a better numerical simulation is pointed out.Comment: 9 page

    Simultaneous nanoscale excitation and emission mapping by cathodoluminescence

    Full text link
    Free-electron-based spectroscopies can reveal the nanoscale optical properties of semiconductor materials and nanophotonic devices with a spatial resolution far beyond the diffraction limit of light. However, the retrieved spatial information is constrained to the excitation space defined by the electron beam position, while information on the delocalization associated with the spatial extension of the probed optical modes in the specimen has so far been missing, despite its relevance in ruling the optical properties of nanostructures. In this study, we demonstrate a cathodoluminescence method that can access both excitation and emission spaces at the nanoscale, illustrating the power of such simultaneous excitation and emission mapping technique by revealing a sub-wavelength emission position modulation as well as by visualizing electromagnetic energy transport in nanoplasmonic systems. Besides the fundamental interest of these results, our technique grants us access into previously inaccessible nanoscale optical properties

    Hierarchical Triggering of Star Formation by Superbubbles in W3/W4

    Full text link
    It is generally believed that expanding superbubbles and mechanical feedback from massive stars trigger star formation, because there are numerous examples of superbubbles showing secondary star formation at their edges. However, while these systems show an age sequence, they do not provide strong evidence of a causal relationship. The W3/W4 Galactic star-forming complex suggests a three-generation hierarchy: the supergiant shell structures correspond to the oldest generation; these triggered the formation of IC 1795 in W3, the progenitor of a molecular superbubble; which in turn triggered the current star-forming episodes in the embedded regions W3-North, W3-Main, and W3-OH. We present UBV photometry and spectroscopic classifications for IC 1795, which show an age of 3 - 5 Myr. This age is intermediate between the reported 6 - 20 Myr age of the supergiant shell system, and the extremely young ages (10^4 - 10^5 yr) for the embedded knots of ultracompact HII regions, W3-North, W3-Main, and W3-OH. Thus, an age sequence is indeed confirmed for the entire W3/W4 hierarchical system. This therefore provides some of the first convincing evidence that superbubble action and mechanical feedback are indeed a triggering mechanism for star formation.Comment: 10 pages, 6 figures; accepted to the Astronomical Journal. Figure 2 included in this submission as JPE

    Quasi-Solitons in Dissipative Systems and Exactly Solvable Lattice Models

    Full text link
    A system of first-order differential-difference equations with time lag describes the formation of density waves, called as quasi-solitons for dissipative systems in this paper. For co-moving density waves, the system reduces to some exactly solvable lattice models. We construct a shock-wave solution as well as one-quasi-soliton solution, and argue that there are pseudo-conserved quantities which characterize the formation of the co-moving waves. The simplest non-trivial one is given to discuss the presence of a cascade phenomena in relaxation process toward the pattern formation.Comment: REVTeX, 4 pages, 1 figur

    Massless Thirring model in canonical quantization scheme

    Full text link
    It is shown that the exact solvability of the massless Thirring model in the canonical quantization scheme originates from the intrinsic linearizability of its Heisenberg equations in the method of dynamical mappings. The corresponding role of inequivalent representations of free massless Dirac field is elucidated.Comment: 10 page

    SCUBA Mapping of Spitzer c2d Small Clouds and Cores

    Get PDF
    We present submillimeter observations of dark clouds that are part of the Spitzer Legacy Program, From Molecular Cores to Planet-Forming Disks (c2d). We used the Submillimetre Common User's Bolometer Array to map the regions observed by Spitzer by the c2d program to create a census of dense molecular cores including data from the infrared to the submillimeter. In this paper, we present the basic data from these observations: maps, fluxes, and source attributes. We also show data for an object just outside the Perseus cloud that was serendipitously observed in our program. We propose that this object is a newly discovered, evolved protostar.Comment: 37 pages, accepted to The Astronomical Journa
    • …
    corecore