1 research outputs found
FINCH: A Blueprint for Accessible and Scientifically Valuable Remote Sensing Satellite Missions
Satellite remote sensing missions have grown in popularity over the past fifteen years due to their ability to cover large swaths of land at regular time intervals, making them suitable for monitoring environmental trends such as greenhouse gas emissions and agricultural practices. As environmental monitoring becomes central in global efforts to combat climate change, accessible platforms for contributing to this research are critical. Many remote sensing missions demand high performance of payloads, restricting research and development to organizations with sufficient resources to address these challenges. Atmospheric remote sensing missions, for example, require extremely high spatial and spectral resolutions to generate scientifically useful results. As an undergraduate-led design team, the University of Toronto Aerospace Team’s Space Systems Division has performed an extensive mission selection process to find a feasible and impactful mission focusing on crop residue mapping. This mission profile provides the data needed to improve crop residue retention practices and reduce greenhouse gas emissions from soil, while relaxing performance requirements relative to many active atmospheric sensing missions. This is accompanied by the design of FINCH, a 3U CubeSat with a hyperspectral camera composed of custom and commercial off-the-shelf components. The team’s custom composite payload, the FINCH Eye, strives to advance performance achieved at this form factor by leveraging novel technologies while keeping design feasibility for a student team a priority. Optical and mechanical design decisions and performance are detailed, as well as assembly, integration, and testing considerations. Beyond its design, the FINCH Eye is examined from operational, timeline, and financial perspectives, and a discussion of the supporting firmware, data processing, and attitude control systems is included. Insight is provided into open-source tools that the team has developed to aid in the design process, including a linear error analysis tool for assessing scientific performance, an optical system tradeoff analysis tool, and data processing algorithms. Ultimately, the team presents a comprehensive case study of an accessible and impactful satellite optical payload design process, in hopes of serving as a blueprint for future design teams seeking to contribute to remote sensing research