47 research outputs found

    Plasma environment of an intermediately active comet : Evolution and dynamics observed by ESA's Rosetta spacecraft at 67P/Churyumov-Gerasimenko

    No full text
    The subject of this thesis is the evolution and dynamics of the plasma environment of a moderately active comet before, during and after its closest approach to the Sun. For over 2 years in 2014-2016, the European Space Agency’s Rosetta spacecraft followed the comet 67P/Churyumov-Gerasimenko at distances typically between a few tens and a few hundred kilometers from the nucleus, the longest and closest inspection of a comet ever made. Its payload included a suite of five plasma instruments (the Rosetta Plasma Consortium, RPC), providing unprecedented in-situ measurements of the plasma environment in the inner coma of a comet. In the first two studies, we use spacecraft potential measurements by the Langmuir probe instrument (LAP) to study the evolving cometary plasma environment. The spacecraft potential was mostly negative, often below -10 V and sometimes below -20 V, revealing the presence of warm (around 5-10 eV) coma photoelectrons, not effectively cooled by collisions with the relatively tenuous coma gas. The magnitude of the negative spacecraft potential depends on the electron density and traced heliocentric, cometocentric, seasonal and diurnal variations in cometary outgassing, consistent with production at or inside the cometocentric distance of the spacecraft as the dominant source of the observed plasma. In the third study, we investigate ion velocities and electron temperatures in the diamagnetic cavity of the comet, combining LAP and Mutual Impedance Probe (MIP) measurements. Ion velocities were generally in the range 2-4 km/s, well above the expected neutral velocity of at most 1 km/s. Thus, the ions were (at least partially) decoupled from the neutrals already inside the diamagnetic cavity, indicating that ion-neutral drag was not responsible for balancing the outside magnetic pressure. The spacecraft potential was around -5 V throughout the cavity, showing that warm electrons were consistently present inside the cavity, at least as far in as Rosetta reached. Also, cold (below about 0.1 eV) electrons were consistently observed throughout the cavity, but less consistently in the surrounding region, suggesting that while Rosetta never entered a region of efficient collisional cooling of electrons, such a region was possibly not far away during the cavity crossings. Also, it reinforces the idea of previous authors that the intermittent nature of the cold electron component was due to filamentation of this cold plasma at or near the cavity boundary, possibly related to an instability of this boundary. Finally, we report the detection of large-amplitude, quasi-harmonic density-fluctuations with associated magnetic field oscillations in association with asymmetric plasma and magnetic field enhancements previously found in the region surrounding the diamagnetic cavity, occurring predominantly on their descending slopes. Typical frequencies are around 0.1 Hz, i.e. about ten times the water and half the proton gyro-frequency, and the associated magnetic field oscillations, when detected, have wave vectors perpendicular to the background magnetic field. We suggest that they are Ion Bernstein waves, possibly excited by the drift-cyclotron instability resulting from the strong plasma inhomogeneities this region

    Plasma environment of an intermediately active comet : Evolution and dynamics observed by ESA's Rosetta spacecraft at 67P/Churyumov-Gerasimenko

    No full text
    The subject of this thesis is the evolution and dynamics of the plasma environment of a moderately active comet before, during and after its closest approach to the Sun. For over 2 years in 2014-2016, the European Space Agency’s Rosetta spacecraft followed the comet 67P/Churyumov-Gerasimenko at distances typically between a few tens and a few hundred kilometers from the nucleus, the longest and closest inspection of a comet ever made. Its payload included a suite of five plasma instruments (the Rosetta Plasma Consortium, RPC), providing unprecedented in-situ measurements of the plasma environment in the inner coma of a comet. In the first two studies, we use spacecraft potential measurements by the Langmuir probe instrument (LAP) to study the evolving cometary plasma environment. The spacecraft potential was mostly negative, often below -10 V and sometimes below -20 V, revealing the presence of warm (around 5-10 eV) coma photoelectrons, not effectively cooled by collisions with the relatively tenuous coma gas. The magnitude of the negative spacecraft potential depends on the electron density and traced heliocentric, cometocentric, seasonal and diurnal variations in cometary outgassing, consistent with production at or inside the cometocentric distance of the spacecraft as the dominant source of the observed plasma. In the third study, we investigate ion velocities and electron temperatures in the diamagnetic cavity of the comet, combining LAP and Mutual Impedance Probe (MIP) measurements. Ion velocities were generally in the range 2-4 km/s, well above the expected neutral velocity of at most 1 km/s. Thus, the ions were (at least partially) decoupled from the neutrals already inside the diamagnetic cavity, indicating that ion-neutral drag was not responsible for balancing the outside magnetic pressure. The spacecraft potential was around -5 V throughout the cavity, showing that warm electrons were consistently present inside the cavity, at least as far in as Rosetta reached. Also, cold (below about 0.1 eV) electrons were consistently observed throughout the cavity, but less consistently in the surrounding region, suggesting that while Rosetta never entered a region of efficient collisional cooling of electrons, such a region was possibly not far away during the cavity crossings. Also, it reinforces the idea of previous authors that the intermittent nature of the cold electron component was due to filamentation of this cold plasma at or near the cavity boundary, possibly related to an instability of this boundary. Finally, we report the detection of large-amplitude, quasi-harmonic density-fluctuations with associated magnetic field oscillations in association with asymmetric plasma and magnetic field enhancements previously found in the region surrounding the diamagnetic cavity, occurring predominantly on their descending slopes. Typical frequencies are around 0.1 Hz, i.e. about ten times the water and half the proton gyro-frequency, and the associated magnetic field oscillations, when detected, have wave vectors perpendicular to the background magnetic field. We suggest that they are Ion Bernstein waves, possibly excited by the drift-cyclotron instability resulting from the strong plasma inhomogeneities this region

    Plasma environment of an intermediately active comet : Evolution and dynamics observed by ESA's Rosetta spacecraft at 67P/Churyumov-Gerasimenko

    No full text
    The subject of this thesis is the evolution and dynamics of the plasma environment of a moderately active comet before, during and after its closest approach to the Sun. For over 2 years in 2014-2016, the European Space Agency’s Rosetta spacecraft followed the comet 67P/Churyumov-Gerasimenko at distances typically between a few tens and a few hundred kilometers from the nucleus, the longest and closest inspection of a comet ever made. Its payload included a suite of five plasma instruments (the Rosetta Plasma Consortium, RPC), providing unprecedented in-situ measurements of the plasma environment in the inner coma of a comet. In the first two studies, we use spacecraft potential measurements by the Langmuir probe instrument (LAP) to study the evolving cometary plasma environment. The spacecraft potential was mostly negative, often below -10 V and sometimes below -20 V, revealing the presence of warm (around 5-10 eV) coma photoelectrons, not effectively cooled by collisions with the relatively tenuous coma gas. The magnitude of the negative spacecraft potential depends on the electron density and traced heliocentric, cometocentric, seasonal and diurnal variations in cometary outgassing, consistent with production at or inside the cometocentric distance of the spacecraft as the dominant source of the observed plasma. In the third study, we investigate ion velocities and electron temperatures in the diamagnetic cavity of the comet, combining LAP and Mutual Impedance Probe (MIP) measurements. Ion velocities were generally in the range 2-4 km/s, well above the expected neutral velocity of at most 1 km/s. Thus, the ions were (at least partially) decoupled from the neutrals already inside the diamagnetic cavity, indicating that ion-neutral drag was not responsible for balancing the outside magnetic pressure. The spacecraft potential was around -5 V throughout the cavity, showing that warm electrons were consistently present inside the cavity, at least as far in as Rosetta reached. Also, cold (below about 0.1 eV) electrons were consistently observed throughout the cavity, but less consistently in the surrounding region, suggesting that while Rosetta never entered a region of efficient collisional cooling of electrons, such a region was possibly not far away during the cavity crossings. Also, it reinforces the idea of previous authors that the intermittent nature of the cold electron component was due to filamentation of this cold plasma at or near the cavity boundary, possibly related to an instability of this boundary. Finally, we report the detection of large-amplitude, quasi-harmonic density-fluctuations with associated magnetic field oscillations in association with asymmetric plasma and magnetic field enhancements previously found in the region surrounding the diamagnetic cavity, occurring predominantly on their descending slopes. Typical frequencies are around 0.1 Hz, i.e. about ten times the water and half the proton gyro-frequency, and the associated magnetic field oscillations, when detected, have wave vectors perpendicular to the background magnetic field. We suggest that they are Ion Bernstein waves, possibly excited by the drift-cyclotron instability resulting from the strong plasma inhomogeneities this region

    Rosetta spacecraft potential and activity evolution of comet 67P

    No full text
    The plasma environment of an active comet provides a unique setting for plasma physics research. The complex interaction of newly created cometary ions with the flowing plasma of the solar wind gives rise to a plethora of plasma physics phenomena, that can be studied over a large range of activity levels as the distance to the sun, and hence the influx of solar energy, varies. In this thesis, we have used measurements of the spacecraft potential by the Rosetta Langmuir probe instrument (LAP) to study the evolution of activity of comet 67P/Churyumov-Gerasimenko as it approached the sun from 3.6 AU in August 2014 to 2.1 AU in March 2015. The measurements are validated by cross-calibration to a fully independent measurement by an electrostatic analyzer, the Ion Composition Analyzer (ICA), also on board Rosetta. The spacecraft was found to be predominantly negatively charged during the time covered by our investigation, driven so by a rather high electron temperature of ~5 eV resulting from the low collision rate between electrons and the tenuous neutral gas. The spacecraft potential exhibited a clear covariation with the neutral density as measured by the ROSINA Comet Pressure Sensor (COPS) on board Rosetta. As the spacecraft potential depends on plasma density and electron temperature, this shows that the neutral gas and the plasma are closely coupled. The neutral density and negative spacecraft potential were higher in the northern hemisphere, which experienced summer conditions during the investigated period due to the nucleus spin axis being tilted toward the sun. In this hemisphere, we found a clear variation of spacecraft potential with comet longitude, exactly as seen for the neutral gas, with coincident peaks in neutral density and spacecraft potential magnitude roughly every 6 h, when sunlit parts of the neck region of the bi- lobed nucleus were in view of the spacecraft. The plasma density was estimated to have increased during the investigated time period by a factor of 8-12 in the northern hemisphere and possibly as much as a factor of 20-44 in the southern hemisphere, due to the combined effects of seasonal changes and decreasing heliocentric distance. The spacecraft potential measurements obtained by LAP generally exhibited good correlation with the estimates from ICA, confirming the accuracy of both of these instruments for measurements of the spacecraft potential.

    Rosetta spacecraft potential and activity evolution of comet 67P

    No full text
    The plasma environment of an active comet provides a unique setting for plasma physics research. The complex interaction of newly created cometary ions with the flowing plasma of the solar wind gives rise to a plethora of plasma physics phenomena, that can be studied over a large range of activity levels as the distance to the sun, and hence the influx of solar energy, varies. In this thesis, we have used measurements of the spacecraft potential by the Rosetta Langmuir probe instrument (LAP) to study the evolution of activity of comet 67P/Churyumov-Gerasimenko as it approached the sun from 3.6 AU in August 2014 to 2.1 AU in March 2015. The measurements are validated by cross-calibration to a fully independent measurement by an electrostatic analyzer, the Ion Composition Analyzer (ICA), also on board Rosetta. The spacecraft was found to be predominantly negatively charged during the time covered by our investigation, driven so by a rather high electron temperature of ~5 eV resulting from the low collision rate between electrons and the tenuous neutral gas. The spacecraft potential exhibited a clear covariation with the neutral density as measured by the ROSINA Comet Pressure Sensor (COPS) on board Rosetta. As the spacecraft potential depends on plasma density and electron temperature, this shows that the neutral gas and the plasma are closely coupled. The neutral density and negative spacecraft potential were higher in the northern hemisphere, which experienced summer conditions during the investigated period due to the nucleus spin axis being tilted toward the sun. In this hemisphere, we found a clear variation of spacecraft potential with comet longitude, exactly as seen for the neutral gas, with coincident peaks in neutral density and spacecraft potential magnitude roughly every 6 h, when sunlit parts of the neck region of the bi- lobed nucleus were in view of the spacecraft. The plasma density was estimated to have increased during the investigated time period by a factor of 8-12 in the northern hemisphere and possibly as much as a factor of 20-44 in the southern hemisphere, due to the combined effects of seasonal changes and decreasing heliocentric distance. The spacecraft potential measurements obtained by LAP generally exhibited good correlation with the estimates from ICA, confirming the accuracy of both of these instruments for measurements of the spacecraft potential. QC 20200602</p

    Rosetta spacecraft potential and activity evolution of comet 67P

    No full text
    The plasma environment of an active comet provides a unique setting for plasma physics research. The complex interaction of newly created cometary ions with the flowing plasma of the solar wind gives rise to a plethora of plasma physics phenomena, that can be studied over a large range of activity levels as the distance to the sun, and hence the influx of solar energy, varies. In this thesis, we have used measurements of the spacecraft potential by the Rosetta Langmuir probe instrument (LAP) to study the evolution of activity of comet 67P/Churyumov-Gerasimenko as it approached the sun from 3.6 AU in August 2014 to 2.1 AU in March 2015. The measurements are validated by cross-calibration to a fully independent measurement by an electrostatic analyzer, the Ion Composition Analyzer (ICA), also on board Rosetta. The spacecraft was found to be predominantly negatively charged during the time covered by our investigation, driven so by a rather high electron temperature of ~5 eV resulting from the low collision rate between electrons and the tenuous neutral gas. The spacecraft potential exhibited a clear covariation with the neutral density as measured by the ROSINA Comet Pressure Sensor (COPS) on board Rosetta. As the spacecraft potential depends on plasma density and electron temperature, this shows that the neutral gas and the plasma are closely coupled. The neutral density and negative spacecraft potential were higher in the northern hemisphere, which experienced summer conditions during the investigated period due to the nucleus spin axis being tilted toward the sun. In this hemisphere, we found a clear variation of spacecraft potential with comet longitude, exactly as seen for the neutral gas, with coincident peaks in neutral density and spacecraft potential magnitude roughly every 6 h, when sunlit parts of the neck region of the bi- lobed nucleus were in view of the spacecraft. The plasma density was estimated to have increased during the investigated time period by a factor of 8-12 in the northern hemisphere and possibly as much as a factor of 20-44 in the southern hemisphere, due to the combined effects of seasonal changes and decreasing heliocentric distance. The spacecraft potential measurements obtained by LAP generally exhibited good correlation with the estimates from ICA, confirming the accuracy of both of these instruments for measurements of the spacecraft potential. QC 20200602</p

    Rosetta spacecraft potential and activity evolution of comet 67P

    No full text
    The plasma environment of an active comet provides a unique setting for plasma physics research. The complex interaction of newly created cometary ions with the flowing plasma of the solar wind gives rise to a plethora of plasma physics phenomena, that can be studied over a large range of activity levels as the distance to the sun, and hence the influx of solar energy, varies. In this thesis, we have used measurements of the spacecraft potential by the Rosetta Langmuir probe instrument (LAP) to study the evolution of activity of comet 67P/Churyumov-Gerasimenko as it approached the sun from 3.6 AU in August 2014 to 2.1 AU in March 2015. The measurements are validated by cross-calibration to a fully independent measurement by an electrostatic analyzer, the Ion Composition Analyzer (ICA), also on board Rosetta. The spacecraft was found to be predominantly negatively charged during the time covered by our investigation, driven so by a rather high electron temperature of ~5 eV resulting from the low collision rate between electrons and the tenuous neutral gas. The spacecraft potential exhibited a clear covariation with the neutral density as measured by the ROSINA Comet Pressure Sensor (COPS) on board Rosetta. As the spacecraft potential depends on plasma density and electron temperature, this shows that the neutral gas and the plasma are closely coupled. The neutral density and negative spacecraft potential were higher in the northern hemisphere, which experienced summer conditions during the investigated period due to the nucleus spin axis being tilted toward the sun. In this hemisphere, we found a clear variation of spacecraft potential with comet longitude, exactly as seen for the neutral gas, with coincident peaks in neutral density and spacecraft potential magnitude roughly every 6 h, when sunlit parts of the neck region of the bi- lobed nucleus were in view of the spacecraft. The plasma density was estimated to have increased during the investigated time period by a factor of 8-12 in the northern hemisphere and possibly as much as a factor of 20-44 in the southern hemisphere, due to the combined effects of seasonal changes and decreasing heliocentric distance. The spacecraft potential measurements obtained by LAP generally exhibited good correlation with the estimates from ICA, confirming the accuracy of both of these instruments for measurements of the spacecraft potential.

    Noise sources in the electric field antenna on the ESA JUICE satellite

    No full text
    The noise in the Langmuir Probe and Plasma Wave Instrument (LP-PWI) on board ESA:s future Jupiter satellite JUICE (Jupiter ICy Moons Explorer) was investigated. Thermal Johnson-Nyquist noise and shot noise, caused by fluctuations in the probe-plasma currents, were combined with the quasi-thermal noise (QTN) due to thermal fluctuations in the electric field in the plasma, using a small signal equivalent circuit model. The contributions and effects of each of the considered noise sources were examined and compared for a number of representative space plasma conditions, including the cold dense plasma of Ganymede's ionosphere and the hot tenuous plasma out in the Jovian magnetosphere. The results showed that in the cold dense plasma of Ganymede's ionosphere, the antenna was long compared to the Debye length and the quasi-thermal noise had a clearly pronounced peak and a steep high-frequency cut-off. For an antenna biased to 1 V with respect to the plasma, the shot noise due to the ambient plasma was the dominant source of noise. For a an antenna at the floating potential the photoelectron shot noise coalesced with the shot and Nyquist noises of the ambient plasma to form almost a single curve. In the hot tenuous plasma out in Jupiter's magnetosphere, the antenna was short compared to the Debye length and the QTN spectrum was much flatter, with little or no peak at the plasma frequency and a very weak high-frequency cut-off. For an antenna biased to 1 V, the shot noise due to photoelectron emission dominated at Callisto's orbital position whereas at Ganymede's and Europa's orbital positions the Nyquist and shot noises of the ambient plasma particles were the dominant noise components. For an antenna at the floating potential, the shot and Nyquist noises of the ambient plasma also dominated the output noise, except at Europa's orbital position, where the quasi-thermal noise was the largest noise component for frequencies at and above the plasma frequency. The numerical calculations were performed using MATLAB. The code was made available in a Git repository at https://github.com/eliasodelstad/irfuproj_JUICE_noise

    Plasma environment of an intermediately active comet : Evolution and dynamics observed by ESA's Rosetta spacecraft at 67P/Churyumov-Gerasimenko

    No full text
    The subject of this thesis is the evolution and dynamics of the plasma environment of a moderately active comet before, during and after its closest approach to the Sun. For over 2 years in 2014-2016, the European Space Agency’s Rosetta spacecraft followed the comet 67P/Churyumov-Gerasimenko at distances typically between a few tens and a few hundred kilometers from the nucleus, the longest and closest inspection of a comet ever made. Its payload included a suite of five plasma instruments (the Rosetta Plasma Consortium, RPC), providing unprecedented in-situ measurements of the plasma environment in the inner coma of a comet. In the first two studies, we use spacecraft potential measurements by the Langmuir probe instrument (LAP) to study the evolving cometary plasma environment. The spacecraft potential was mostly negative, often below -10 V and sometimes below -20 V, revealing the presence of warm (around 5-10 eV) coma photoelectrons, not effectively cooled by collisions with the relatively tenuous coma gas. The magnitude of the negative spacecraft potential depends on the electron density and traced heliocentric, cometocentric, seasonal and diurnal variations in cometary outgassing, consistent with production at or inside the cometocentric distance of the spacecraft as the dominant source of the observed plasma. In the third study, we investigate ion velocities and electron temperatures in the diamagnetic cavity of the comet, combining LAP and Mutual Impedance Probe (MIP) measurements. Ion velocities were generally in the range 2-4 km/s, well above the expected neutral velocity of at most 1 km/s. Thus, the ions were (at least partially) decoupled from the neutrals already inside the diamagnetic cavity, indicating that ion-neutral drag was not responsible for balancing the outside magnetic pressure. The spacecraft potential was around -5 V throughout the cavity, showing that warm electrons were consistently present inside the cavity, at least as far in as Rosetta reached. Also, cold (below about 0.1 eV) electrons were consistently observed throughout the cavity, but less consistently in the surrounding region, suggesting that while Rosetta never entered a region of efficient collisional cooling of electrons, such a region was possibly not far away during the cavity crossings. Also, it reinforces the idea of previous authors that the intermittent nature of the cold electron component was due to filamentation of this cold plasma at or near the cavity boundary, possibly related to an instability of this boundary. Finally, we report the detection of large-amplitude, quasi-harmonic density-fluctuations with associated magnetic field oscillations in association with asymmetric plasma and magnetic field enhancements previously found in the region surrounding the diamagnetic cavity, occurring predominantly on their descending slopes. Typical frequencies are around 0.1 Hz, i.e. about ten times the water and half the proton gyro-frequency, and the associated magnetic field oscillations, when detected, have wave vectors perpendicular to the background magnetic field. We suggest that they are Ion Bernstein waves, possibly excited by the drift-cyclotron instability resulting from the strong plasma inhomogeneities this region
    corecore